(New page: Homework 1 > 1.1 > 1.2 > 1.3 > 1.4 > 1.5 ==Period...)
 
(Periodic Functions)
 
Line 3: Line 3:
 
>[[HW1.1 Allen Humphreys_ECE301Fall2008mboutin| 1.1]]  >[[HW1.2 Allen Humphreys_ECE301Fall2008mboutin| 1.2]] >[[HW1.3 Allen Humphreys_ECE301Fall2008mboutin| 1.3]] >[[HW1.4 Allen Humphreys_ECE301Fall2008mboutin| 1.4]] >[[HW1.5 Allen Humphreys_ECE301Fall2008mboutin| 1.5]]
 
>[[HW1.1 Allen Humphreys_ECE301Fall2008mboutin| 1.1]]  >[[HW1.2 Allen Humphreys_ECE301Fall2008mboutin| 1.2]] >[[HW1.3 Allen Humphreys_ECE301Fall2008mboutin| 1.3]] >[[HW1.4 Allen Humphreys_ECE301Fall2008mboutin| 1.4]] >[[HW1.5 Allen Humphreys_ECE301Fall2008mboutin| 1.5]]
  
==Periodic Functions==
+
=Periodic Functions=
 +
==Functions==
 +
=== Period Function ===
 +
 
 +
<math>e^{2i*\Pi*}</math> is a periodic function since it has the form <math>e^{N*W_o*\Pi}</math>, where <math>W_o = 1 and N = 2</math>
 +
 
 +
By definition, <math>e^{N*W_o*\Pi}</math> is a periodic function if <math>\frac{W_o}{2*\Pi}</math> is a rational number.
 +
 
 +
<math>\frac{W_o}{2*\Pi}</math> using the above numbers, yields a result of <math>\frac{1}{2}</math> which is a rational number.
 +
 
 +
 
 +
=== Non-Period Function ===
 +
 
 +
<math>e^{200i}</math> is not a periodic function since <math>\frac{W_o}{2*\Pi}</math> yields <math>\frac{100}{\Pi}</math> which is not a rational number.

Latest revision as of 17:30, 5 September 2008

Homework 1_ECE301Fall2008mboutin

> 1.1 > 1.2 > 1.3 > 1.4 > 1.5

Periodic Functions

Functions

Period Function

$ e^{2i*\Pi*} $ is a periodic function since it has the form $ e^{N*W_o*\Pi} $, where $ W_o = 1 and N = 2 $

By definition, $ e^{N*W_o*\Pi} $ is a periodic function if $ \frac{W_o}{2*\Pi} $ is a rational number.

$ \frac{W_o}{2*\Pi} $ using the above numbers, yields a result of $ \frac{1}{2} $ which is a rational number.


Non-Period Function

$ e^{200i} $ is not a periodic function since $ \frac{W_o}{2*\Pi} $ yields $ \frac{100}{\Pi} $ which is not a rational number.

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison