(New page: == ENERGY ==) |
(→ENERGY) |
||
Line 1: | Line 1: | ||
== ENERGY == | == ENERGY == | ||
+ | <math>E=\int_{t1}^{t2}{|f(t)|^2dt}</math> | ||
+ | |||
+ | <math>E = \int_{0}^{2 \pi}{|2sin(t)|^2 dt}</math> | ||
+ | |||
+ | <math>E=2\int_{0}^{2\pi}{|sin(t)|^2dt}</math> | ||
+ | |||
+ | <math>E=(t-\frac{1}{2}sin(2t))|_{t=0}^{t=2\pi}</math> | ||
+ | |||
+ | <math>\,\ E= 2 \pi</math> | ||
+ | |||
+ | == POWER == | ||
+ | <math>P=\frac{1}{t_2 - t_1}\int_{t1}^{t2}{|f(x)|^2}</math> | ||
+ | |||
+ | <math>P=\frac{1}{2{\pi} - 0}\int_{t1}^{t2}{|f(x)|^2}</math> | ||
+ | |||
+ | <math>P=\frac{1}{2{\pi} - 0}*{2\pi}</math> | ||
+ | |||
+ | <math>\,\ P= 1</math> |
Latest revision as of 17:07, 5 September 2008
ENERGY
$ E=\int_{t1}^{t2}{|f(t)|^2dt} $
$ E = \int_{0}^{2 \pi}{|2sin(t)|^2 dt} $
$ E=2\int_{0}^{2\pi}{|sin(t)|^2dt} $
$ E=(t-\frac{1}{2}sin(2t))|_{t=0}^{t=2\pi} $
$ \,\ E= 2 \pi $
POWER
$ P=\frac{1}{t_2 - t_1}\int_{t1}^{t2}{|f(x)|^2} $
$ P=\frac{1}{2{\pi} - 0}\int_{t1}^{t2}{|f(x)|^2} $
$ P=\frac{1}{2{\pi} - 0}*{2\pi} $
$ \,\ P= 1 $