(New page: == ENERGY ==)
 
(ENERGY)
 
Line 1: Line 1:
 
== ENERGY ==
 
== ENERGY ==
 +
<math>E=\int_{t1}^{t2}{|f(t)|^2dt}</math>
 +
 +
<math>E = \int_{0}^{2 \pi}{|2sin(t)|^2 dt}</math>
 +
 +
<math>E=2\int_{0}^{2\pi}{|sin(t)|^2dt}</math>
 +
 +
<math>E=(t-\frac{1}{2}sin(2t))|_{t=0}^{t=2\pi}</math>
 +
 +
<math>\,\ E= 2 \pi</math>
 +
 +
== POWER ==
 +
<math>P=\frac{1}{t_2 - t_1}\int_{t1}^{t2}{|f(x)|^2}</math>
 +
 +
<math>P=\frac{1}{2{\pi} - 0}\int_{t1}^{t2}{|f(x)|^2}</math>
 +
 +
<math>P=\frac{1}{2{\pi} - 0}*{2\pi}</math>
 +
 +
<math>\,\ P= 1</math>

Latest revision as of 17:07, 5 September 2008

ENERGY

$ E=\int_{t1}^{t2}{|f(t)|^2dt} $

$ E = \int_{0}^{2 \pi}{|2sin(t)|^2 dt} $

$ E=2\int_{0}^{2\pi}{|sin(t)|^2dt} $

$ E=(t-\frac{1}{2}sin(2t))|_{t=0}^{t=2\pi} $

$ \,\ E= 2 \pi $

POWER

$ P=\frac{1}{t_2 - t_1}\int_{t1}^{t2}{|f(x)|^2} $

$ P=\frac{1}{2{\pi} - 0}\int_{t1}^{t2}{|f(x)|^2} $

$ P=\frac{1}{2{\pi} - 0}*{2\pi} $

$ \,\ P= 1 $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch