(New page: ==Problem== Compute the energy and power of x(t) = <math>(3t+2)^2</math> ==Energy== <math>E=\int_0^{2}{(3t + 2)^2dt}</math> <math>E = \dfrac{1}{9}(3t+2)^3|_{t=0}^{t=2}</math> E = 56)
 
 
Line 3: Line 3:
  
 
==Energy==
 
==Energy==
 +
<math>E=\int_{t_1}^{t_2}x(t)dt</math>
 +
 
<math>E=\int_0^{2}{(3t + 2)^2dt}</math>
 
<math>E=\int_0^{2}{(3t + 2)^2dt}</math>
  
Line 8: Line 10:
  
 
E = 56
 
E = 56
 +
 +
==Power==
 +
<math>P=\dfrac{1}{{t_2}-{t_1}}\int_{t_1}^{t_2}x(t)dt</math>
 +
 +
<math>P = E*.5</math>
 +
 +
P = 28

Latest revision as of 07:20, 5 September 2008

Problem

Compute the energy and power of x(t) = $ (3t+2)^2 $

Energy

$ E=\int_{t_1}^{t_2}x(t)dt $

$ E=\int_0^{2}{(3t + 2)^2dt} $

$ E = \dfrac{1}{9}(3t+2)^3|_{t=0}^{t=2} $

E = 56

Power

$ P=\dfrac{1}{{t_2}-{t_1}}\int_{t_1}^{t_2}x(t)dt $

$ P = E*.5 $

P = 28

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison