(Periodic Functions)
(Periodic Functions)
 
Line 6: Line 6:
 
A CT signal x(t) is called periodic if there exists an integer T > 0 such that x(t+T) = x(t).
 
A CT signal x(t) is called periodic if there exists an integer T > 0 such that x(t+T) = x(t).
  
x(t) = <math>e^{j*w*t}</math> can be a periodic function. The period is <math>(2 * pi) / w</math>.  If <math>w / (2 * pi)</math> is a rational number then the exponential function is periodic.  
+
x(t) = <math>e^{n*j*w*t}</math> can be a periodic function. The period is <math>(2 * pi) / w</math>.  If <math>w / (2 * pi)</math> is a rational number then the exponential function is periodic.  
  
  
Line 12: Line 12:
 
Periodic Function:
 
Periodic Function:
  
<math>e^{(j * pi / 6)}</math> , has  w =<math> pi / 6 </math>  therefore:  <math>w/(2*pi) = 1/12</math> with is a rational number, thus proving that the function is periodic.
+
<math>e^{(n* j * pi / 6)}</math> , has  w =<math> pi / 6 </math>  therefore:  <math>w/(2*pi) = 1/12</math> which is a rational number, thus proving that the function is periodic.
  
  
 
Nonperiodic Function:
 
Nonperiodic Function:
 +
 +
<math>e^{(n* j / 6)}</math> , has  w =<math> 1 / 6 </math>    therefore: <math>w/(2*pi) = 1/(12*pi)</math> which is not a rational number.  Accordingly the function is nonperiodic.

Latest revision as of 07:17, 5 September 2008

Periodic Functions

A DT signal x[n] is called periodic if there exists an integer N such that x[n+N] = x[n] for all n.

A CT signal x(t) is called periodic if there exists an integer T > 0 such that x(t+T) = x(t).

x(t) = $ e^{n*j*w*t} $ can be a periodic function. The period is $ (2 * pi) / w $. If $ w / (2 * pi) $ is a rational number then the exponential function is periodic.


Periodic Function:

$ e^{(n* j * pi / 6)} $ , has w =$ pi / 6 $ therefore: $ w/(2*pi) = 1/12 $ which is a rational number, thus proving that the function is periodic.


Nonperiodic Function:

$ e^{(n* j / 6)} $ , has w =$ 1 / 6 $ therefore: $ w/(2*pi) = 1/(12*pi) $ which is not a rational number. Accordingly the function is nonperiodic.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood