(New page: Compute the Energy and Power of the signal <math>x(t)=\dfrac{2t}{t^2+5}</math> between 0 and 2 seconds. ==Energy== <math>E=\int_0^{2}{\dfrac{2t}{t^2+5}dt}</math> <math>U=t^2+5</math> ...)
 
 
(3 intermediate revisions by the same user not shown)
Line 19: Line 19:
 
<math>E=\ln 9 - \ln 5</math>
 
<math>E=\ln 9 - \ln 5</math>
  
<math>E=\ln {9/5}</math>
+
<math>E=\ln{(\dfrac{9}{5})} </math>
 +
 
 +
==Power==
 +
 
 +
<math>U=\int_{t_1}^{t_2}x(t)dt</math>
 +
 
 +
 
 +
<math>U=\int_0^{2}{\dfrac{2t}{t^2+5}dt}</math>
 +
 +
         
 +
Limits:
 +
 
 +
<math>U(0)=0^2+5=5</math>
 +
 
 +
<math>U(2)=2^2+5=9</math>
 +
 
 +
<math>P=\dfrac{1}{2}\int_{5}^{9}\dfrac{du}{U}</math>
 +
 
 +
<math>P=\dfrac{1}{2}\ln U |_{U=5}^{U=9}</math>
 +
 
 +
<math>P=\dfrac{1}{2}(\ln 9 - \ln 5)</math>
 +
 
 +
<math>P=\dfrac{1}{2}\ln{(\dfrac{9}{5})} </math>

Latest revision as of 06:08, 5 September 2008

Compute the Energy and Power of the signal $ x(t)=\dfrac{2t}{t^2+5} $ between 0 and 2 seconds.

Energy

$ E=\int_0^{2}{\dfrac{2t}{t^2+5}dt} $

$ U=t^2+5 $

$ dU=2tdt $

Limits:

$ U(0)=0^2+5=5 $

$ U(2)=2^2+5=4+5=9 $

$ E=\int_{5}^{9}\dfrac{du}{U} $

$ E=\ln U |_{U=5}^{U=9} $

$ E=\ln 9 - \ln 5 $

$ E=\ln{(\dfrac{9}{5})} $

Power

$ U=\int_{t_1}^{t_2}x(t)dt $


$ U=\int_0^{2}{\dfrac{2t}{t^2+5}dt} $


Limits:

$ U(0)=0^2+5=5 $

$ U(2)=2^2+5=9 $

$ P=\dfrac{1}{2}\int_{5}^{9}\dfrac{du}{U} $

$ P=\dfrac{1}{2}\ln U |_{U=5}^{U=9} $

$ P=\dfrac{1}{2}(\ln 9 - \ln 5) $

$ P=\dfrac{1}{2}\ln{(\dfrac{9}{5})} $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin