Line 4: Line 4:
  
  
[[File:Spaces.png|thumbnail|center|Image by Jhausauer]]
+
[[File:Spaces.png|300px|thumbnail|center|Image by Jhausauer]]

Latest revision as of 23:02, 6 December 2020

Normed Vector Space:

To get closer to the subject of Banach spaces, we now turn the concept of norms into a usable dimensional space. This product of this transformation is called a normed vector space. A normed vector space is a space represented by the pair (V, ||.||). This space is a type of metric space, which itself is a subset of topological spaces, as seen in the image below.


Image by Jhausauer

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood