(Created page with "== Graphs == A graph is simply a structure consisting of “edges” and “vertices.” An edge will connect two vertices together, and if appropriate, the edge may be defin...")
 
 
(One intermediate revision by the same user not shown)
Line 4: Line 4:
  
 
This paper will be mostly concerned with “quivers,” which are a particular type of “directed multigraph” (a graph consisting of directed edges, which also allow for multiple edges). A quiver is special in that it strictly prohibits any instances of 1-cycles and 2-cycles.
 
This paper will be mostly concerned with “quivers,” which are a particular type of “directed multigraph” (a graph consisting of directed edges, which also allow for multiple edges). A quiver is special in that it strictly prohibits any instances of 1-cycles and 2-cycles.
 +
 +
[[ Walther MA271 Fall2020 topic4|Back to Walther MA271 Fall2020 topic4]]
 +
[[Category:MA271Fall2020Walther]]

Latest revision as of 18:49, 6 December 2020

Graphs

A graph is simply a structure consisting of “edges” and “vertices.” An edge will connect two vertices together, and if appropriate, the edge may be defined as directed to indicate a proper direction. It is possible to have multiple edges between the same two vertices, which we call an instance of “multiple edges” --- the graph would be classified as a “multigraph.” Cycles in graphs are paths that can be taken along edges that start and end at the same vertex. A “1-cycle,” also called a “loop,” is an edge that connects a vertex to itself. A “2-cycle” is a cycle that consists of two edges, and an “n-cycle” consists of n edges.

This paper will be mostly concerned with “quivers,” which are a particular type of “directed multigraph” (a graph consisting of directed edges, which also allow for multiple edges). A quiver is special in that it strictly prohibits any instances of 1-cycles and 2-cycles.

Back to Walther MA271 Fall2020 topic4

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood