m |
|||
Line 3: | Line 3: | ||
The Laplace Operator is an operator defined as the divergence of the gradient of a function. | The Laplace Operator is an operator defined as the divergence of the gradient of a function. | ||
− | + | <math>{\large\Delta=\nabla\cdot\nabla=\nabla^{2}=\bigg[\frac{\partial}{\partial x_{1}},\cdots,\frac{\partial}{\partial x_{N}}\bigg]\cdot\bigg[\frac{\partial}{\partial x_{1}},\cdots,\frac{\partial}{\partial x_{N}}\bigg]=\sum\limits_{n=1}^{N}\frac{\partial^{2}}{\partial x^{2}_{n}}}</math> | |
− | [ | + | |
[[Walther_MA271_Fall2020_topic9|Back to main page]] | [[Walther_MA271_Fall2020_topic9|Back to main page]] |
Latest revision as of 22:24, 5 December 2020
Introduction
The Laplace Operator is an operator defined as the divergence of the gradient of a function. $ {\large\Delta=\nabla\cdot\nabla=\nabla^{2}=\bigg[\frac{\partial}{\partial x_{1}},\cdots,\frac{\partial}{\partial x_{N}}\bigg]\cdot\bigg[\frac{\partial}{\partial x_{1}},\cdots,\frac{\partial}{\partial x_{N}}\bigg]=\sum\limits_{n=1}^{N}\frac{\partial^{2}}{\partial x^{2}_{n}}} $