(Created page with "Category:ECE Category:QE Category:CNSIP Category:problem solving Category:image processing <center> <font size= 4> ECE_PhD_Qualifying_Exams|ECE Ph.D. Qu...")
 
 
(3 intermediate revisions by the same user not shown)
Line 38: Line 38:
  
 
<math>Y^tY = (N\times p)(p\times N) = N \times N</math>
 
<math>Y^tY = (N\times p)(p\times N) = N \times N</math>
 +
 +
since N<<P, the size of <math>Y^tY</math> is smaller
  
 
b) <math>YY^t = U \Sigma V^t V \Sigma U^t = U\Sigma^2 U^t</math> and <math>(YY^t)^t = (U\Sigma^2 U^t)^t = U\Sigma^2 U^t = YY^t </math>. Therefore, <math>YY^t</math> is symmetric
 
b) <math>YY^t = U \Sigma V^t V \Sigma U^t = U\Sigma^2 U^t</math> and <math>(YY^t)^t = (U\Sigma^2 U^t)^t = U\Sigma^2 U^t = YY^t </math>. Therefore, <math>YY^t</math> is symmetric
Line 51: Line 53:
 
d)<math>U\Sigma V^t=Y \Longrightarrow U = Y(\Sigma V^t)^{-1} = Y(D^{1/2}T^t)^{-1}</math>
 
d)<math>U\Sigma V^t=Y \Longrightarrow U = Y(\Sigma V^t)^{-1} = Y(D^{1/2}T^t)^{-1}</math>
  
e)<math>YY^t = U\Sigma U^t = E\Sigma E^t</math>
+
e)<math>YY^t = U\Sigma^2 U^t = E\Lambda E^t</math>
  
 
<math>E = U = Y(D^{1/2}T^t)^{-1}</math>
 
<math>E = U = Y(D^{1/2}T^t)^{-1}</math>
  
 
f)The name we give to the column of U is eigenimages
 
f)The name we give to the column of U is eigenimages

Latest revision as of 19:45, 9 July 2019


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 5: Image Processing

August 2016 (Published in Jul 2019)

Problem 1

a) $ \lambda_n^c=\lambda_n^b-\lambda_n^d $

b) $ G_n = \frac{d\lambda_n^c}{dx}=-\mu (x,y_0+n\Delta d)\lambda_n^c $

c) $ \lambda_n = \lambda_n^c e^{-\int_{0}^{x}\mu(t)dt} \Longrightarrow \hat{P}_n = \int_{0}^{x}\mu(t)dt= -ln(\frac{\lambda_n}{\lambda_n^c}) = -ln(\frac{\lambda_n}{\lambda_n^b-\lambda_n^d}) $

d) $ \hat{P}_n = \int_{0}^{T_n}\mu_0dt = \mu_0 T_n $

  A straight line with slope $ \mu_0 $

Problem 2

a)Since U is $ p \times N $, $ \Sigma $ and V are $ N \times N $]

$ Y = U \Sigma V^t = p \times N $

$ YY^t = (p\times N)(N\times p) = p \times p $

$ Y^tY = (N\times p)(p\times N) = N \times N $

since N<<P, the size of $ Y^tY $ is smaller

b) $ YY^t = U \Sigma V^t V \Sigma U^t = U\Sigma^2 U^t $ and $ (YY^t)^t = (U\Sigma^2 U^t)^t = U\Sigma^2 U^t = YY^t $. Therefore, $ YY^t $ is symmetric

For an arbitrary x, $ x^tYY^tx = x^t U\Sigma \Sigma U^t x=(\Sigma U^t x)^t\Sigma U^t x=\|\Sigma U^t x\|^2 \geq 0 $. Therefore, $ YY^t $ is positive semi-definite.

Similarly, $ Y^tY = V \Sigma^2 V^t $ and $ (Y^tY)^t = (V \Sigma^2 V^t)^t = V \Sigma^2 V^t = Y^tY $, $ Y^tY $ is symmetric

For an arbitrary x, $ x^tY^tYx = x^t V\Sigma \Sigma V^t x=(\Sigma V^t x)^t\Sigma V^t x=\|\Sigma V^t x\|^2 \geq 0 $. Therefore, $ Y^tY $ is positive semi-definite.

c) From B, obtain that $ Y^tY = V\Sigma^2 V^t $ while $ Y^tY = TDT^t $. $ V = T $ and $ \Sigma = D^{1/2} $

d)$ U\Sigma V^t=Y \Longrightarrow U = Y(\Sigma V^t)^{-1} = Y(D^{1/2}T^t)^{-1} $

e)$ YY^t = U\Sigma^2 U^t = E\Lambda E^t $

$ E = U = Y(D^{1/2}T^t)^{-1} $

f)The name we give to the column of U is eigenimages

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood