(Created page with "Category:ECE Category:QE Category:problem solving <center> <font size= 4> ECE Ph.D. Qualifying Exam </font size> <font size= 4> Comm...")
 
 
(2 intermediate revisions by the same user not shown)
Line 26: Line 26:
 
<math>y(n)=sinc^2(\dfrac{nT}{a}) \Rightarrow X_s(f)=\dfrac{1}{T}\sum_{k=-\infty}^{\infty} X(f-kF)=\dfrac{|a|}{T}\sum_{k=-\infty}^{\infty}\Lambda(a(f-\dfrac{k}{T}))</math><br>
 
<math>y(n)=sinc^2(\dfrac{nT}{a}) \Rightarrow X_s(f)=\dfrac{1}{T}\sum_{k=-\infty}^{\infty} X(f-kF)=\dfrac{|a|}{T}\sum_{k=-\infty}^{\infty}\Lambda(a(f-\dfrac{k}{T}))</math><br>
 
<br>
 
<br>
 +
 +
c)<br>
 +
minimum sampling frequency <math>\dfrac{1}{T}\ge\dfrac{2}{a}</math>  <math>f\ge\dfrac{2}{a}</math>  <math>T\le\dfrac{a}{2}</math><br>
 +
<br>
 +
 +
d)<br>
 +
<math>T=\dfrac{a}{2}</math><br>
 +
https://www.projectrhea.org/rhea/dropbox_/381ea5db244c12bb92e6de3206725a7a/Wan82_CS5-3.PNG<br>
 +
<br>
 +
 +
e)<br>
 +
<math>T=a</math><br>
 +
https://www.projectrhea.org/rhea/dropbox_/381ea5db244c12bb92e6de3206725a7a/Wan82_CS5-4.PNG<br>
 +
<br>
 +
 
----
 
----
 +
===Similar Problem===
 +
[https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_13/CS-5.pdf?dl=1 2013 QE CS5 Prob1]<br>
 +
[https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_09/CS-5%20QE%2009.pdf?dl=1 2009 QE CS5 Prob1]<br>
 +
[https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_08/CS-5%20QE%2008.pdf?dl=1 2008 QE CS5 Prob3]<br>
 +
 +
----
 +
 
[[QE_2017_CS-5|Back to QE CS question 5, August 2017]]
 
[[QE_2017_CS-5|Back to QE CS question 5, August 2017]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 11:00, 25 February 2019


ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 5: Image Processing

August 2017 Problem 2


Solution

a)
$ sinc^2(\dfrac{t}{a}) \Rightarrow |a|\Lambda(af) $ (CTFT)
Wan82_CS5-2.PNG

b)
$ y(n)=sinc^2(\dfrac{nT}{a}) \Rightarrow X_s(f)=\dfrac{1}{T}\sum_{k=-\infty}^{\infty} X(f-kF)=\dfrac{|a|}{T}\sum_{k=-\infty}^{\infty}\Lambda(a(f-\dfrac{k}{T})) $

c)
minimum sampling frequency $ \dfrac{1}{T}\ge\dfrac{2}{a} $ $ f\ge\dfrac{2}{a} $ $ T\le\dfrac{a}{2} $

d)
$ T=\dfrac{a}{2} $
Wan82_CS5-3.PNG

e)
$ T=a $
Wan82_CS5-4.PNG


Similar Problem

2013 QE CS5 Prob1
2009 QE CS5 Prob1
2008 QE CS5 Prob3


Back to QE CS question 5, August 2017

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn