(Created page with "Category:ECE Category:QE Category:problem solving <center> <font size= 4> ECE Ph.D. Qualifying Exam </font size> <font size= 4> Comm...")
 
 
(6 intermediate revisions by the same user not shown)
Line 20: Line 20:
 
a)<br>
 
a)<br>
 
Because <math>x[-n]=x[n]</math> <math>y[-n]=y[n]</math><br>
 
Because <math>x[-n]=x[n]</math> <math>y[-n]=y[n]</math><br>
<math>r_{xy}[l]=x[l]\ast Y^{\ast}[-l]=x[-l]\ast Y^{\ast}[l]=Y[l]\ast x*{\ast}[-l]=r_{yx}[l]</math><br>
+
<math>r_{xy}[l]=X[l]\ast Y^{\ast}[-l]=X[-l]\ast Y^{\ast}[l]=Y[l]\ast X^{\ast}[-l]=r_{yx}[l]</math><br>
 +
<br>
 +
 
 +
b)<br>
 +
<math>z[n]=x[n]+jy[n]</math><br>
 +
<math>r_{zz}[l]=(x[l]+jy[l])*(x[-l]+jy[-l])^*=x[l]*x^*[-l]+jy[l]*x^*[-l]-jx[l]*y^*[-l]+y[l]*y^*[-l]=r_{xx}[l]+r_{yy}[l]</math><br>
 +
<br>
 +
 
 +
c)<br>
 +
<math>x[n]=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}(1+(-1)^n)=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}(1+e^{j\pi n})</math><br>
 +
<math>\Rightarrow r_{xx}[l]=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}(1+e^{j\pi n})=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}2cos^2\dfrac{\pi}{2}l</math>
 +
<br>
 +
 
 +
d)<br>
 +
<math>Y[n]=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}cos(\dfrac{\pi}{2}n) \Rightarrow r_{yy}[l]=\dfrac{sin(\dfrac{\pi}{4})}{\pi l}cos(\dfrac{\pi}{2}l)</math><br>
 +
<br>
 +
 
 +
e)<br>
 +
<math>r_{zz}[l]=r_{xx}[l]+r_{yy}[l]=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}2cos^2\dfrac{\pi}{2}l+\dfrac{sin(\dfrac{\pi}{4})}{\pi l}cos(\dfrac{\pi}{2}l)</math><br>
 +
<br>
 +
 
 +
f)<br>
 +
https://www.projectrhea.org/rhea/dropbox_/381ea5db244c12bb92e6de3206725a7a/Wan82_CS2-7.PNG<br>
 +
<br>
 +
 
 +
----
 +
===Similar Problem===
 +
[https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_2017/CS-2?dl=1 2017 QE CS2 Prob3]<br>
 +
[https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_2016/CS-2?dl=1 2016 QE CS2 Prob1]<br>
 +
[https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_2015/CS-2?dl=1 2015 QE CS2 Prob3]<br>
 +
 
 +
 
 
----
 
----
 
[[QE2011_CS-2_ECE538|Back to QE CS question 2, August 2011]]
 
[[QE2011_CS-2_ECE538|Back to QE CS question 2, August 2011]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 10:54, 25 February 2019


ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 2: Signal Processing

August 2011 Problem 2


Solution

a)
Because $ x[-n]=x[n] $ $ y[-n]=y[n] $
$ r_{xy}[l]=X[l]\ast Y^{\ast}[-l]=X[-l]\ast Y^{\ast}[l]=Y[l]\ast X^{\ast}[-l]=r_{yx}[l] $

b)
$ z[n]=x[n]+jy[n] $
$ r_{zz}[l]=(x[l]+jy[l])*(x[-l]+jy[-l])^*=x[l]*x^*[-l]+jy[l]*x^*[-l]-jx[l]*y^*[-l]+y[l]*y^*[-l]=r_{xx}[l]+r_{yy}[l] $

c)
$ x[n]=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}(1+(-1)^n)=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}(1+e^{j\pi n}) $
$ \Rightarrow r_{xx}[l]=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}(1+e^{j\pi n})=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}2cos^2\dfrac{\pi}{2}l $

d)
$ Y[n]=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}cos(\dfrac{\pi}{2}n) \Rightarrow r_{yy}[l]=\dfrac{sin(\dfrac{\pi}{4})}{\pi l}cos(\dfrac{\pi}{2}l) $

e)
$ r_{zz}[l]=r_{xx}[l]+r_{yy}[l]=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}2cos^2\dfrac{\pi}{2}l+\dfrac{sin(\dfrac{\pi}{4})}{\pi l}cos(\dfrac{\pi}{2}l) $

f)
Wan82_CS2-7.PNG


Similar Problem

2017 QE CS2 Prob3
2016 QE CS2 Prob1
2015 QE CS2 Prob3



Back to QE CS question 2, August 2011

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett