(7 intermediate revisions by the same user not shown)
Line 22: Line 22:
 
<math>R_{x(t)x(t+\tau)}=R_{xx}(\tau)</math><br>
 
<math>R_{x(t)x(t+\tau)}=R_{xx}(\tau)</math><br>
 
Such that<br>
 
Such that<br>
<math>Y(t)=c_1X(t)-c_2X(t-\tau)</math> <math>~N((c_1-c_2)\mu_x),(c_1^2+c_2^2)\sigma_x^2-2c_1c_2R_{xx}(\tau))</math><br>
+
<math>Y(t)=c_1X(t)-c_2X(t-\tau)</math> <math>\sim N((c_1-c_2)\mu_x,(c_1^2+c_2^2)\sigma_x^2-2c_1c_2R_{xx}(\tau))</math><br>
 +
<math>\Rightarrow
 +
P(Y(t)\le\gamma)
 +
=\int_{-\infty}^{r} \dfrac{1}{\sqrt{2\pi\sigma^2}}e^{-\dfrac{1}{2\sigma^2}(x-\mu)^2}dx
 +
=\dfrac{1}{\sigma}\int_{-\infty}^{r} \dfrac{1}{\sqrt{2\pi}}e^{-\dfrac{(\dfrac{x-\mu}{\sigma})^2}{2}}dx \\
 +
=\dfrac{1}{\sigma}\int_{-\infty}^{\dfrac{r-\mu}{\sigma}} \dfrac{1}{\sqrt{2\pi}}e^{-\dfrac{z^2}{2}}dz=\dfrac{1}{\sigma}\Phi(\dfrac{r-\mu}{\sigma})</math><br>
 +
<math>\sigma^2=c_1^2\sigma_x^2+c_2^2\sigma_x^2-2c_1c_2R_{xx}(\tau)</math>  <math>\mu=(c_1-c_2)\mu_x</math><br>
 +
<math>P(Y(t)\le r)=\dfrac{1}{\sqrt{c_1^2\sigma_x^2+c_2^2\sigma_x^2-2c_1c_2R_{xx}(\tau)}}\Phi(\dfrac{r-(c_1-c_2)\mu_x}{\sqrt{c_1^2\sigma_x^2+c_2^2\sigma_x^2-2c_1c_2R_{xx}(\tau)}})</math><br>
 
----
 
----
 
[[ECE-QE_CS1-2016|Back to QE CS question 1, August 2016]]
 
[[ECE-QE_CS1-2016|Back to QE CS question 1, August 2016]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 15:36, 19 February 2019


ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 1: Random Variable

August 2016 Problem 4


Solution

Since $ X(t) $ is a wide sense Gaussian Process $ \Rightarrow X(t) $ is SSS.
$ Y(t) $ is a combination of two Gaussian distribution.
$ R_{x(t)x(t+\tau)}=R_{xx}(\tau) $
Such that
$ Y(t)=c_1X(t)-c_2X(t-\tau) $ $ \sim N((c_1-c_2)\mu_x,(c_1^2+c_2^2)\sigma_x^2-2c_1c_2R_{xx}(\tau)) $
$ \Rightarrow P(Y(t)\le\gamma) =\int_{-\infty}^{r} \dfrac{1}{\sqrt{2\pi\sigma^2}}e^{-\dfrac{1}{2\sigma^2}(x-\mu)^2}dx =\dfrac{1}{\sigma}\int_{-\infty}^{r} \dfrac{1}{\sqrt{2\pi}}e^{-\dfrac{(\dfrac{x-\mu}{\sigma})^2}{2}}dx \\ =\dfrac{1}{\sigma}\int_{-\infty}^{\dfrac{r-\mu}{\sigma}} \dfrac{1}{\sqrt{2\pi}}e^{-\dfrac{z^2}{2}}dz=\dfrac{1}{\sigma}\Phi(\dfrac{r-\mu}{\sigma}) $
$ \sigma^2=c_1^2\sigma_x^2+c_2^2\sigma_x^2-2c_1c_2R_{xx}(\tau) $ $ \mu=(c_1-c_2)\mu_x $
$ P(Y(t)\le r)=\dfrac{1}{\sqrt{c_1^2\sigma_x^2+c_2^2\sigma_x^2-2c_1c_2R_{xx}(\tau)}}\Phi(\dfrac{r-(c_1-c_2)\mu_x}{\sqrt{c_1^2\sigma_x^2+c_2^2\sigma_x^2-2c_1c_2R_{xx}(\tau)}}) $


Back to QE CS question 1, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett