(2 intermediate revisions by the same user not shown)
Line 22: Line 22:
 
\begin{cases}
 
\begin{cases}
 
0 & \omega<0 \\
 
0 & \omega<0 \\
\dfrac{1}{2}hb-\dfrac{1}{2}hb(\dfrac{h-\omega}{h})^2=\dfrac{2\omega}{h}-\dfrac{w^2}{h^2} & 0<=\omega<h \\
+
\dfrac{1}{2}hb-\dfrac{1}{2}hb(\dfrac{h-\omega}{h})^2=\dfrac{2\omega}{h}-\dfrac{w^2}{h^2} & 0\le\omega<h \\
1 & \omega>=h
+
1 & \omega\ge h
 
\end{cases}
 
\end{cases}
 
</math><br>
 
</math><br>
Line 32: Line 32:
 
\begin{cases}
 
\begin{cases}
 
0 & \omega<0 \\
 
0 & \omega<0 \\
\dfrac{-2}{h^2}\omega+\dfrac{2}{h} & 0<=\omega<h \\
+
\dfrac{-2}{h^2}\omega+\dfrac{2}{h} & 0\le\omega<h \\
0 & \omega>=h
+
0 & \omega\ge h
 
\end{cases}
 
\end{cases}
 
</math><br>
 
</math><br>
  
 
c)<br>
 
c)<br>
<math>X(\omega)\bar=\int_{-\infty}^{\infty} \omega f_x(\omega) dx =\int_{0}^{h} -\dfrac{2}{h^2}(\omega)^2 +\dfrac{2}{h}\omega d\omega =\dfrac{1}{3}h</math><br>
+
<math>X(\omega)\bar=\int_{-\infty}^{\infty} \omega f_x(\omega) dx =\int_{0}^{h} -\dfrac{2}{h^2}\omega^2 +\dfrac{2}{h}\omega d\omega =\dfrac{1}{3}h</math><br>
  
 
d)<br>
 
d)<br>

Latest revision as of 15:32, 19 February 2019


ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 1: Random Variable

August 2016 Problem 1


Solution

a)
$ F_x(\omega)= \begin{cases} 0 & \omega<0 \\ \dfrac{1}{2}hb-\dfrac{1}{2}hb(\dfrac{h-\omega}{h})^2=\dfrac{2\omega}{h}-\dfrac{w^2}{h^2} & 0\le\omega<h \\ 1 & \omega\ge h \end{cases} $

b)
$ f_x(\omega)=\dfrac{\partial F_x(\omega)}{\partial\omega} $
$ f_x(\omega)= \begin{cases} 0 & \omega<0 \\ \dfrac{-2}{h^2}\omega+\dfrac{2}{h} & 0\le\omega<h \\ 0 & \omega\ge h \end{cases} $

c)
$ X(\omega)\bar=\int_{-\infty}^{\infty} \omega f_x(\omega) dx =\int_{0}^{h} -\dfrac{2}{h^2}\omega^2 +\dfrac{2}{h}\omega d\omega =\dfrac{1}{3}h $

d)
$ P(x>\dfrac{h}{3})=\int_{\dfrac{h}{3}}^{+\infty} \omega f_x(\omega)dx = \int_{\dfrac{h}{3}}^{h} -\dfrac{2}{h^2}\omega+\dfrac{2}{h}d\omega =\dfrac{4}{9} $


Back to QE CS question 1, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang