Line 20: Line 20:
 
a) From the Optimization textbook, Zak Stanislaw. Lemma 8.3<br>
 
a) From the Optimization textbook, Zak Stanislaw. Lemma 8.3<br>
 
For fixed step gradient descent algorithms <math>\alpha</math> should in the range <math>(0,\dfrac{2}{\lambda max(Q)})</math><br>
 
For fixed step gradient descent algorithms <math>\alpha</math> should in the range <math>(0,\dfrac{2}{\lambda max(Q)})</math><br>
b) <math>f(x)-\dfrac{1}{2}x^TQx-b^Tx=\dfrac{1}{2}x^T\begin{bmatrix} 12 & 0 \\ 0 & 4 \end{bmatrix}-5</math><br>
+
b) <math>Q=\begin{bmatrix} 12 & 0 \\ 0 & 4 \end{bmatrix}</math><br>
 
such that <math>\lambda max(Q)=12 \Rightarrow \alpha \in (0, \dfrac{1}{6})</math><br>  
 
such that <math>\lambda max(Q)=12 \Rightarrow \alpha \in (0, \dfrac{1}{6})</math><br>  
 
----
 
----

Latest revision as of 15:19, 19 February 2019


ECE Ph.D. Qualifying Exam

Automatic Control (AC)

Question 3: Optimization

August 2016 Problem 2


Solution

a) From the Optimization textbook, Zak Stanislaw. Lemma 8.3
For fixed step gradient descent algorithms $ \alpha $ should in the range $ (0,\dfrac{2}{\lambda max(Q)}) $
b) $ Q=\begin{bmatrix} 12 & 0 \\ 0 & 4 \end{bmatrix} $
such that $ \lambda max(Q)=12 \Rightarrow \alpha \in (0, \dfrac{1}{6}) $


Back to QE AC question 3, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett