(New page: == Periodic Functions == == Non Periodic Functions ==)
 
 
(9 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
=Periodic versus non-periodic functions ([[Homework_1_ECE301Fall2008mboutin|hw1]], [[ECE301]])=
 +
<span style="color:green"> Read the instructor's comments [[hw1periodicECE301f08profcomments|here]]. </span>
 +
 
== Periodic Functions ==
 
== Periodic Functions ==
 +
In discrete time, a function is period if there exists an integer N such that x[n+N] = x[n]
  
 +
An example of a discrete time periodic function would be x[n] = e^(jwn) if and only if w/(2*pi) is a rational number.
 +
 +
In continuous time, a function x(t) is periodic if there exists a T>0 such that x(t+T) = x(t)
 +
 +
An example of a continuous time periodic function would be x(t) = cos(t) with a period of 2*pi.
  
 
== Non Periodic Functions ==
 
== Non Periodic Functions ==
 +
All functions that are not periodic I suppose would then be Non-periodic.
 +
 +
An example of a non-periodic function would be x(t) = e^t

Latest revision as of 06:18, 14 April 2010

Periodic versus non-periodic functions (hw1, ECE301)

Read the instructor's comments here.

Periodic Functions

In discrete time, a function is period if there exists an integer N such that x[n+N] = x[n]

An example of a discrete time periodic function would be x[n] = e^(jwn) if and only if w/(2*pi) is a rational number.

In continuous time, a function x(t) is periodic if there exists a T>0 such that x(t+T) = x(t)

An example of a continuous time periodic function would be x(t) = cos(t) with a period of 2*pi.

Non Periodic Functions

All functions that are not periodic I suppose would then be Non-periodic.

An example of a non-periodic function would be x(t) = e^t

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics