(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
Topic: Energy and Power Computation of a Signal
+
==Problem==
</center>
+
Compute the energy  <math class="inline">E_\infty</math> and the power  <math class="inline">P_\infty</math> of the DT exponential signal below:
----
+
==Question==
+
  
Compute the energy  <math class="inline">E_\infty</math> and the power  <math class="inline">P_\infty</math> of the following DT signal:
 
  
 +
<math>x[n]= e^{-j3\pi n} </math>
 +
 +
 +
==Solution==
  
<math>x[n]= e^{-j3\pi n} </math>
 
  
 
Norm of a signal:
 
Norm of a signal:
 +
 
<math>\begin{align}
 
<math>\begin{align}
 
|je^{3\pi jn}| = {{je^{3\pi jn}}\times{-je^{-3\pi jn}}}
 
|je^{3\pi jn}| = {{je^{3\pi jn}}\times{-je^{-3\pi jn}}}
Line 18: Line 19:
  
 
<math>\begin{align}
 
<math>\begin{align}
E_{\infty}&=\lim_{N\rightarrow \infty}\sum_{n=-N}^N |je^{3\pi jn}| \\
+
E_{\infty}&=\lim_{N\rightarrow \infty}\sum_{n=-N}^N |je^{3\pi jn}|^2 \\
 
&= \lim_{N\rightarrow \infty}\sum_{n=-N}^N 1 \\
 
&= \lim_{N\rightarrow \infty}\sum_{n=-N}^N 1 \\
 
&=\infty. \\
 
&=\infty. \\
 
\end{align}</math>  
 
\end{align}</math>  
 +
  
 
<math>E_{\infty} = \infty</math>.  
 
<math>E_{\infty} = \infty</math>.  
 +
 +
 +
  
 
<math>\begin{align}
 
<math>\begin{align}
Line 33: Line 38:
 
&= 1  \\
 
&= 1  \\
 
\end{align}</math>
 
\end{align}</math>
 +
  
 
<math>P_{\infty} = 1 </math>
 
<math>P_{\infty} = 1 </math>
 +
 +
 +
 +
 +
Conclusion:
 +
 +
<math>E_{\infty} = \infty</math>, <math>P_{\infty} = 1 </math>

Latest revision as of 18:48, 1 December 2018

Problem

Compute the energy $ E_\infty $ and the power $ P_\infty $ of the DT exponential signal below:


$ x[n]= e^{-j3\pi n} $


Solution

Norm of a signal:

$ \begin{align} |je^{3\pi jn}| = {{je^{3\pi jn}}\times{-je^{-3\pi jn}}} &= {{-j^2}\times{e^{3\pi jn - 3\pi jn}}} &= 1 \end{align} $


$ \begin{align} E_{\infty}&=\lim_{N\rightarrow \infty}\sum_{n=-N}^N |je^{3\pi jn}|^2 \\ &= \lim_{N\rightarrow \infty}\sum_{n=-N}^N 1 \\ &=\infty. \\ \end{align} $


$ E_{\infty} = \infty $.



$ \begin{align} P_{\infty}&=\lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N |je^{3\pi jn}|^2 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N 1 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^{2N} 1 \\ &= \lim_{N\rightarrow \infty}{2N+1 \over {2N+1}} \\ &= \lim_{N\rightarrow \infty}{1}\\ &= 1 \\ \end{align} $


$ P_{\infty} = 1 $



Conclusion:

$ E_{\infty} = \infty $, $ P_{\infty} = 1 $

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics