(41 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
<br /> | <br /> | ||
− | {| | + | {| |
|- | |- | ||
!Property Name!! Property !! Proof | !Property Name!! Property !! Proof | ||
|- | |- | ||
− | |Periodicity|| <math>\chi(\omega + 2\pi) = \chi(\omega)</math> || | + | |Periodicity|| <math>\chi(\omega + 2\pi) = \chi(\omega)</math> || <math>\chi(\omega+2\pi) = \sum_{n=-\infty}^{\infty}x[n]e^{-j(\omega +2\pi)n}</math> <br /> |
+ | <math>= \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} e^{-j 2\pi}</math> <br /> | ||
+ | <math>= e^{-j 2\pi} \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}</math> <br /> | ||
+ | <math>= (1)\chi(\omega) = \chi(\omega)</math><br />________________________________<br /> | ||
|- | |- | ||
− | | Linearity || <math>ax_{1}[n] + bx_{2}[n] \rightarrow a\chi_{1}(\omega) + b\chi_{2}(\omega)</math> || | + | | Linearity || <math>ax_{1}[n] + bx_{2}[n] \rightarrow a\chi_{1}(\omega) + b\chi_{2}(\omega)</math> || <math>\mathfrak{F}(ax_{1}[n] + bx_{2}[n]) = \sum_{n=-\infty}^{\infty}[ax_{1}[n] + bx_{2}[n]]e^{-j\omega n}</math><br /> |
+ | <math>\sum_{n=-\infty}^{\infty}ax_{1}[n]e^{-j\omega n} + \sum_{n=-\infty}^{\infty}bx_{2}[n]e^{-j\omega n}</math><br /> | ||
+ | <math>=a\chi_{1}(\omega) + b\chi_{2}(\omega) </math> <br />________________________________<br /> | ||
|- | |- | ||
| Time Shifting & Frequency Shifting || 1) <math>x[n - n_{o}] \rightarrow e^{-j\omega n_{o}}\chi(\omega)</math><br /> | | Time Shifting & Frequency Shifting || 1) <math>x[n - n_{o}] \rightarrow e^{-j\omega n_{o}}\chi(\omega)</math><br /> | ||
2) <math>e^{-j{\omega}_{o}n}x[n] \rightarrow \chi[\omega - \omega_{o}]</math><br /> | 2) <math>e^{-j{\omega}_{o}n}x[n] \rightarrow \chi[\omega - \omega_{o}]</math><br /> | ||
− | || | + | || <math>\mathfrak{F}(x[n - n_{o}]) = \sum_{n=-\infty}^{\infty}x[n - n_{o}]e^{-j\omega n}</math><br /> |
+ | let <math> m = n - n_{o} </math><br /> | ||
+ | <math>\sum_{m=-\infty}^{\infty}x[m]e^{-j\omega m + n_{o}} </math><br /> | ||
+ | <math>= e^{-j\omega n_{o}}\sum_{m=-\infty}^{\infty}x[m]</math><br /> | ||
+ | <math>= e^{-j\omega n_{o}}\chi(\omega)</math> <br /> | ||
+ | ________________________________<br /> | ||
|- | |- | ||
− | | Conjugate & Conjugate Symmetry || <math>x[n] \rightarrow \chi^{*}(-\omega)</math> || <math></math> | + | | Conjugate & Conjugate Symmetry || <math>x[n] \rightarrow \chi^{*}(-\omega)</math> || <math>\mathfrak{F}(x[n]) = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}</math><br /> |
+ | <math>= \sum_{n=-\infty}^{\infty}x[n][cos(\omega n) + jsin(\omega n)]</math><br /> | ||
+ | <math>= \sum_{n=-\infty}^{\infty}x[n]cos(\omega n) + \sum_{n=-\infty}^{\infty}x[n]jsin(\omega n)</math><br /> | ||
+ | <math>= \sum_{n=-\infty}^{\infty}x[n]\frac{1}{2}[e^{j\omega n} + e^{-j\omega n}] + \sum_{n=-\infty}^{\infty}x[n]j\frac{1}{2j}[e^{j\omega n} - e^{-j\omega n}]</math><br /> | ||
+ | Things Cancel out and you are left with.. <br /> | ||
+ | <math>= \sum_{n=-\infty}^{\infty}x[n]e^{j\omega n}</math> <br /> | ||
+ | <math>= \chi^{*}(-\omega)</math> <br />________________________________<br /> | ||
|- | |- | ||
− | | Parversal Relation || <math>\sum_{n=-\infty}^{\infty }\left | x[n] \right |^{2} = \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega</math> || <math></math> | + | | Parversal Relation || <math>\sum_{n=-\infty}^{\infty }\left | x[n] \right |^{2} = \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega</math> || <math>\sum_{n=-\infty}^{\infty} x[n]x[n] = \sum_{n=-\infty}^{\infty}x[n](\frac{1}{2\pi}\int_{0}^{2\pi}\chi(\omega)e^{j\omega n}d\omega)</math><br /> |
+ | <math>= \frac{1}{2\pi}\int_{0}^{2\pi}\chi(\omega)[\sum_{n=-\infty}^{\infty}x[n](\frac{1}{2\pi}e^{j\omega n}]d\omega</math><br /> | ||
+ | <math>= \frac{1}{2\pi}\int_{0}^{2\pi}\chi(\omega)[\chi(-\omega)]d\omega</math><br /> | ||
+ | <math>= \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega</math><br />________________________________<br /> | ||
|- | |- | ||
− | | Convolution || <math>x[n]*y[n] \rightarrow \chi(\omega)\gamma (\omega)</math> || <math></math> | + | | Convolution || <math>x[n]*y[n] \rightarrow \chi(\omega)\gamma (\omega)</math> || Recall <math> x[n]*y[n] = \sum_{k=-\infty}^{\infty}x[k]*y[n-k] </math><br /> |
+ | <math>\mathfrak{F}(x[n]*y[n]) = \sum_{n=-\infty}^{\infty}[\sum_{k=-\infty}^{\infty}x[k]*y[n-k]]e^{-j\omega n}</math><br /> | ||
+ | We can replace <math>e^{-j\omega n}</math> by <math>e^{-j\omega n} = e^{-j\omega n + j\omega k -j\omega k }= e^{-j\omega( n - k ) - j\omega k }= e^{-j\omega( n - k )} e^{-j\omega k }</math><br /> | ||
+ | So..<br /> | ||
+ | <math>= \sum_{n=-\infty}^{\infty}[\sum_{k=-\infty}^{\infty}x[k]*y[n-k]]e^{-j\omega( n - k )} e^{-j\omega k}</math><br /> | ||
+ | <math>= \sum_{k=-\infty}^{\infty}e^{-j\omega k }[\sum_{n=-\infty}^{\infty}x[k]*y[n-k]]e^{-j\omega( n - k )}] </math><br /> | ||
+ | <math>= \chi(\omega)\gamma(\omega)</math><br />________________________________<br /> | ||
|- | |- | ||
− | | Multiplication || <math>x[n]y[n] \rightarrow \frac{1}{2\pi}\chi(\omega)*\gamma (\omega)^{}_{}</math> || <math></math> | + | | Multiplication || <math>x[n]y[n] \rightarrow \frac{1}{2\pi}\chi(\omega)*\gamma (\omega)^{}_{}</math> || Recall for a periodic signal of period T <math> x(t)y(t) = \int_{T}^{ }x(\tau)y(t-\tau)d\tau </math><br /> |
+ | <math>\mathfrak{F}(x[n]y[n]) = \sum_{n=-\infty}^{\infty}[x[n]y[n]]e^{-j\omega n}</math><br /> | ||
+ | |||
+ | <math> = \sum_{n=-\infty}^{\infty}[\frac{1}{2\pi}\int_{0}^{2\pi}\chi(j\omega ')e^{j\omega 'n}d\omega ']]y[n]e^{-j\omega n }</math><br /> | ||
+ | |||
+ | <math> = \frac{1}{2\pi}\int_{0}^{2\pi}\chi(j\omega ')[\sum_{n=-\infty}^{\infty}e^{j\omega 'n} y[n]e^{-j\omega n }] d\omega '</math><br /> | ||
+ | |||
+ | <math> = \frac{1}{2\pi}\int_{0}^{2\pi}\chi(j\omega ')[\sum_{n=-\infty}^{\infty}e^{-jn (\omega-\omega')} y[n]] d\omega '</math><br /> | ||
+ | <math>= \frac{1}{2\pi}\int_{0}^{2\pi}\chi(j\omega ')\gamma(j\omega - \omega')d\omega '</math><br /> | ||
+ | <math>= \chi(j\omega)*\gamma(j\omega)</math><br />________________________________<br /> | ||
|- | |- | ||
− | | Duality || '''''NO DUALITY IN DT''''' || '''''NO DUALITY IN DT''''' | + | | Duality || '''''NO DUALITY IN DT''''' || '''''NO DUALITY IN DT'''''<br /> |
+ | ________________________________<br /> | ||
|- | |- | ||
− | | Differentiation in Frequency || <math>nx[n] \rightarrow j\frac{\mathrm{d} }{\mathrm{d} \omega}\chi(\omega)</math> || <math></math> | + | | Differentiation in Frequency || <math>nx[n] \rightarrow j\frac{\mathrm{d} }{\mathrm{d} \omega}\chi(\omega)</math> || <math>j\frac{\mathrm{d} }{\mathrm{d} \omega} \chi(e^{j\omega}) = j\frac{\mathrm{d} }{\mathrm{d} \omega}\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}</math><br /> |
+ | |||
+ | <math>= j\sum_{n=-\infty}^{\infty}x[n]\frac{\mathrm{d} }{\mathrm{d} \omega}e^{-j\omega n}</math><br /> | ||
+ | <math>= j\sum_{n=-\infty}^{\infty}x[n](-jn)e^{-j\omega n}= \sum_{n=-\infty}^{\infty}(x[n]n)e^{-j\omega n}</math><br /> | ||
+ | <math>= nx[n]\sum_{n=-\infty}^{\infty}e^{-j\omega n} = nx[n]</math><br />________________________________<br /> | ||
|} | |} | ||
+ | == '''<big>List of Common Coefficients of Discrete-Time Fourier Transform''' </big>''' == | ||
+ | <br /> | ||
+ | {| class="wikitable" | ||
+ | |- | ||
+ | ! Waveform !! Digital Time Domain Signal* !! Frequency Domain Signal* | ||
+ | |- | ||
+ | | Constant || <math>1</math> || <math>\delta(k)</math> | ||
+ | |- | ||
+ | | Unit Impulse || <math>\delta(n)</math> || <math>\frac{1}{N}</math> | ||
+ | |- | ||
+ | | Complex Exponential || <math>e^{(j2\pi m \omega n)/N}</math> || <math>\delta((k-m)_{N}))</math> | ||
+ | |- | ||
+ | | Sinusoidal || <math>cos(j2\pi m \omega n)/N</math> || <math>\frac{1}{2}(\delta((k-m)_{N})+ \delta((k+m)_{N}))</math> | ||
+ | |- | ||
+ | | Box* || <math>\delta(n) + \sum_{m=1}^{M} \delta((n-m)_{N}))+ \delta((n+m)_{N}))</math> || <math>\frac{sin(\frac{(2M+1)k\pi}{N})}{N sin(\frac{k\pi}{N})}</math> | ||
+ | |- | ||
+ | | Dsinc* || <math>\frac{sin(\frac{(2M+1)n\pi}{N})}{N sin(\frac{n\pi}{N})}</math> || <math>\delta(k) + \sum_{m=1}^{M} \delta((k-m)_{N}))+ \delta((k+m)_{N}))</math> | ||
+ | |- | ||
+ | | ________________________________<br />*<math>M < \frac{N}{2}</math><br />||________________________________<br /> <math> n \in \mathbb{Z}[0, N - 1]</math><br />||________________________________<br /> <math> k \in \mathbb{Z}[0, N - 1]</math> | ||
+ | |} | ||
+ | By --[[User:Abinhamd|Abinhamd]] ([[User talk:Abinhamd|talk]]) 01:52, 19 March 2018 (EDT)Alanoud Bin Hamdan |
Latest revision as of 12:20, 26 March 2018
Discrete-Time Fourier Transform Properties with Proofs
Property Name | Property | Proof |
---|---|---|
Periodicity | $ \chi(\omega + 2\pi) = \chi(\omega) $ | $ \chi(\omega+2\pi) = \sum_{n=-\infty}^{\infty}x[n]e^{-j(\omega +2\pi)n} $ $ = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} e^{-j 2\pi} $ |
Linearity | $ ax_{1}[n] + bx_{2}[n] \rightarrow a\chi_{1}(\omega) + b\chi_{2}(\omega) $ | $ \mathfrak{F}(ax_{1}[n] + bx_{2}[n]) = \sum_{n=-\infty}^{\infty}[ax_{1}[n] + bx_{2}[n]]e^{-j\omega n} $ $ \sum_{n=-\infty}^{\infty}ax_{1}[n]e^{-j\omega n} + \sum_{n=-\infty}^{\infty}bx_{2}[n]e^{-j\omega n} $ |
Time Shifting & Frequency Shifting | 1) $ x[n - n_{o}] \rightarrow e^{-j\omega n_{o}}\chi(\omega) $ 2) $ e^{-j{\omega}_{o}n}x[n] \rightarrow \chi[\omega - \omega_{o}] $ |
$ \mathfrak{F}(x[n - n_{o}]) = \sum_{n=-\infty}^{\infty}x[n - n_{o}]e^{-j\omega n} $ let $ m = n - n_{o} $ |
Conjugate & Conjugate Symmetry | $ x[n] \rightarrow \chi^{*}(-\omega) $ | $ \mathfrak{F}(x[n]) = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} $ $ = \sum_{n=-\infty}^{\infty}x[n][cos(\omega n) + jsin(\omega n)] $ |
Parversal Relation | $ \sum_{n=-\infty}^{\infty }\left | x[n] \right |^{2} = \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega $ | $ \sum_{n=-\infty}^{\infty} x[n]x[n] = \sum_{n=-\infty}^{\infty}x[n](\frac{1}{2\pi}\int_{0}^{2\pi}\chi(\omega)e^{j\omega n}d\omega) $ $ = \frac{1}{2\pi}\int_{0}^{2\pi}\chi(\omega)[\sum_{n=-\infty}^{\infty}x[n](\frac{1}{2\pi}e^{j\omega n}]d\omega $ |
Convolution | $ x[n]*y[n] \rightarrow \chi(\omega)\gamma (\omega) $ | Recall $ x[n]*y[n] = \sum_{k=-\infty}^{\infty}x[k]*y[n-k] $ $ \mathfrak{F}(x[n]*y[n]) = \sum_{n=-\infty}^{\infty}[\sum_{k=-\infty}^{\infty}x[k]*y[n-k]]e^{-j\omega n} $ |
Multiplication | $ x[n]y[n] \rightarrow \frac{1}{2\pi}\chi(\omega)*\gamma (\omega)^{}_{} $ | Recall for a periodic signal of period T $ x(t)y(t) = \int_{T}^{ }x(\tau)y(t-\tau)d\tau $ $ \mathfrak{F}(x[n]y[n]) = \sum_{n=-\infty}^{\infty}[x[n]y[n]]e^{-j\omega n} $ $ = \sum_{n=-\infty}^{\infty}[\frac{1}{2\pi}\int_{0}^{2\pi}\chi(j\omega ')e^{j\omega 'n}d\omega ']]y[n]e^{-j\omega n } $ $ = \frac{1}{2\pi}\int_{0}^{2\pi}\chi(j\omega ')[\sum_{n=-\infty}^{\infty}e^{j\omega 'n} y[n]e^{-j\omega n }] d\omega ' $ $ = \frac{1}{2\pi}\int_{0}^{2\pi}\chi(j\omega ')[\sum_{n=-\infty}^{\infty}e^{-jn (\omega-\omega')} y[n]] d\omega ' $ |
Duality | NO DUALITY IN DT | NO DUALITY IN DT ________________________________ |
Differentiation in Frequency | $ nx[n] \rightarrow j\frac{\mathrm{d} }{\mathrm{d} \omega}\chi(\omega) $ | $ j\frac{\mathrm{d} }{\mathrm{d} \omega} \chi(e^{j\omega}) = j\frac{\mathrm{d} }{\mathrm{d} \omega}\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} $ $ = j\sum_{n=-\infty}^{\infty}x[n]\frac{\mathrm{d} }{\mathrm{d} \omega}e^{-j\omega n} $ |
List of Common Coefficients of Discrete-Time Fourier Transform
Waveform | Digital Time Domain Signal* | Frequency Domain Signal* |
---|---|---|
Constant | $ 1 $ | $ \delta(k) $ |
Unit Impulse | $ \delta(n) $ | $ \frac{1}{N} $ |
Complex Exponential | $ e^{(j2\pi m \omega n)/N} $ | $ \delta((k-m)_{N})) $ |
Sinusoidal | $ cos(j2\pi m \omega n)/N $ | $ \frac{1}{2}(\delta((k-m)_{N})+ \delta((k+m)_{N})) $ |
Box* | $ \delta(n) + \sum_{m=1}^{M} \delta((n-m)_{N}))+ \delta((n+m)_{N})) $ | $ \frac{sin(\frac{(2M+1)k\pi}{N})}{N sin(\frac{k\pi}{N})} $ |
Dsinc* | $ \frac{sin(\frac{(2M+1)n\pi}{N})}{N sin(\frac{n\pi}{N})} $ | $ \delta(k) + \sum_{m=1}^{M} \delta((k-m)_{N}))+ \delta((k+m)_{N})) $ |
________________________________ *$ M < \frac{N}{2} $ |
________________________________ $ n \in \mathbb{Z}[0, N - 1] $ |
________________________________ $ k \in \mathbb{Z}[0, N - 1] $ |
By --Abinhamd (talk) 01:52, 19 March 2018 (EDT)Alanoud Bin Hamdan