(5 intermediate revisions by the same user not shown)
Line 25: Line 25:
 
  <math>x(t)= e^{-2\pi jt} </math>
 
  <math>x(t)= e^{-2\pi jt} </math>
  
 
What properties of the complex magnitude can you use to check your answer?
 
----
 
==Share your answers below==
 
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
 
----
 
 
==Answer 1===
 
==Answer 1===
 
<math>
 
<math>
 
\begin{align}
 
\begin{align}
E_{\infty}&=\int_{-\infty}^\infty |\sin(2 \pi t)|^2 dt \\
+
E_{\infty}&=\int_{-\infty}^\infty |e^{-2\pi jt}|^2 dt \\
&=\int_{-\infty}^\infty \sin^2(2 \pi t) dt
+
&=\int_{-\infty}^\infty e^{-2\pi jt} * e^{2\pi jt} dt \\  
\end{align}
+
&=\int_{-\infty}^\infty (1) dt \\
</math>
+
 
+
 
+
But <math class="inline">\cos(2x) = \cos^2(x)-\sin^2(x)=1-2\sin^2(x). </math>
+
 
+
and therefore <math class="inline">\sin^2x = \frac{1-\cos(2x)}{2}</math>.
+
 
+
<math>
+
\begin{align}
+
E_{\infty}&=\int_{-\infty}^\infty \frac{1-\cos(4 \pi t)}{2} dt \\
+
&=\int_{-\infty}^\infty \frac{1}{2} dt - \int_{-\infty}^\infty \frac{\cos(4\pi t)}{2} dt \\
+
&\\
+
 
&=\infty
 
&=\infty
 
\end{align}
 
\end{align}
Line 58: Line 40:
 
<math>
 
<math>
 
\begin{align}
 
\begin{align}
P_{\infty}&=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T |\sin(2\pi t)|^2 dt \quad \\
+
P_{\infty}&=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T |e^{2\pi jt}|^2 dt \quad \\
  
 
\text{Similar to math above, the expression can be derived towards}\\
 
\text{Similar to math above, the expression can be derived towards}\\
  
&= \lim_{T\rightarrow \infty} {1 \over {2T}} (\int_{-T}^T \frac{1}{2} dt - \int_{-T}^T \frac{1}{2} * \cos(4\pi t) dt) \quad \\
+
&= \lim_{T\rightarrow \infty} {1 \over {2T}} (\int_{-T}^T (1) dt) \quad \\
& = \lim_{T\rightarrow \infty} {1 \over {2T}} (\frac{1}{2} t \Big| ^T _{-T} - \frac{1}{8\pi} \int_{-T}^T \cos(4\pi t) d(4\pi t)) \quad \\
+
& = \lim_{T\rightarrow \infty} {1 \over {2T}} (t \Big| ^T _{-T}) \quad \\
& = \lim_{T\rightarrow \infty} {1 \over {2T}} ((\frac{1}{2}T - \frac{1}{2}(-T)) - \frac{1}{8\pi} (\sin(4\pi t)) \Big| ^T _{-T})  \quad \\
+
& = \lim_{T\rightarrow \infty} {1 \over {2T}} (T + T)  \quad \\
& = \lim_{T\rightarrow \infty} {1 \over {2T}} (T - \frac{1}{8\pi} (\sin(4\pi T) - \sin(4\pi T)) \quad \\
+
& = \lim_{T\rightarrow \infty} {1 \over {2T}} (2T) \quad \\
&= \lim_{T\rightarrow \infty} {1 \over {2T}} (T) \quad \\
+
&= \lim_{T\rightarrow \infty} (1) \quad \\
&= \lim_{T\rightarrow \infty} {1 \over {2}} \quad \\
+
&= 1 \quad \\
&= \frac{1}{2} \quad \\
+
 
\end{align}
 
\end{align}
 
</math>
 
</math>
  
So <math class="inline">P_{\infty} = \frac{1}{2} </math>.
+
So <math class="inline">P_{\infty} = 1  </math>.
  
  

Latest revision as of 09:22, 22 January 2018


Practice Question on "Signals and Systems"


More Practice Problems


Topic: Signal Energy and Power


Question

Compute the energy $ E_\infty $ and the power $ P_\infty $ of the following continuous-time signal

$ x(t)= e^{-2\pi jt}  $

Answer 1=

$ \begin{align} E_{\infty}&=\int_{-\infty}^\infty |e^{-2\pi jt}|^2 dt \\ &=\int_{-\infty}^\infty e^{-2\pi jt} * e^{2\pi jt} dt \\ &=\int_{-\infty}^\infty (1) dt \\ &=\infty \end{align} $


So $ E_{\infty} = \infty $.

$ \begin{align} P_{\infty}&=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T |e^{2\pi jt}|^2 dt \quad \\ \text{Similar to math above, the expression can be derived towards}\\ &= \lim_{T\rightarrow \infty} {1 \over {2T}} (\int_{-T}^T (1) dt) \quad \\ & = \lim_{T\rightarrow \infty} {1 \over {2T}} (t \Big| ^T _{-T}) \quad \\ & = \lim_{T\rightarrow \infty} {1 \over {2T}} (T + T) \quad \\ & = \lim_{T\rightarrow \infty} {1 \over {2T}} (2T) \quad \\ &= \lim_{T\rightarrow \infty} (1) \quad \\ &= 1 \quad \\ \end{align} $

So $ P_{\infty} = 1 $.



Answer 2


Back to ECE301 Spring 2018 Prof. Boutin

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010