(32 intermediate revisions by the same user not shown)
Line 4: Line 4:
 
[[Category:signal]]
 
[[Category:signal]]
 
[[Category:continuous-time signal]]
 
[[Category:continuous-time signal]]
[[Category:complex numbers]]
 
[[Category:Complex Number Magnitude]]
 
 
[[Category:ECE301]]
 
[[Category:ECE301]]
  
Line 34: Line 32:
 
<math>
 
<math>
 
\begin{align}
 
\begin{align}
E_{\infty}&=\lim_{T\rightarrow \infty}\int_{-T}^T |\sin(2 \pi t)|^2 dt \quad \\
+
E_{\infty}&=\int_{-\infty}^\infty |\sin(2 \pi t)|^2 dt \\
&= \lim_{T\rightarrow \infty}\int_{-T}^T |(cos(2t) + j*sin(2t))|^2 dt \quad \\
+
&=\int_{-\infty}^\infty \sin^2(2 \pi t) dt  
&= \lim_{T\rightarrow \infty}\int_{-T}^T {\sqrt{(cos(2t))^2 + (sin(2t))^2}}^2 dt \quad \\
+
& = \lim_{T\rightarrow \infty}\int_{-T}^T 1 dt \quad \\
+
&= \lim_{T\rightarrow \infty} t \Big| ^T _{-T} \quad \\
+
&=\infty. \quad
+
 
\end{align}
 
\end{align}
 
</math>
 
</math>
 +
 +
 +
But <math class="inline">\cos(2x) = \cos^2(x)-\sin^2(x)=1-2\sin^2(x). </math>
 +
 +
and therefore <math class="inline">\sin^2x = \frac{1-\cos(2x)}{2}</math>.
 +
 +
<math>
 +
\begin{align}
 +
E_{\infty}&=\int_{-\infty}^\infty \frac{1-\cos(4 \pi t)}{2} dt \\
 +
&=\int_{-\infty}^\infty \frac{1}{2} dt - \int_{-\infty}^\infty \frac{\cos(4\pi t)}{2} dt \\
 +
&\\
 +
&=\infty
 +
\end{align}
 +
</math>
 +
  
 
So <math class="inline">E_{\infty} = \infty</math>.
 
So <math class="inline">E_{\infty} = \infty</math>.
Line 47: Line 56:
 
<math>
 
<math>
 
\begin{align}
 
\begin{align}
P_{\infty}&=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T |e^{(2jt)}|^2 dt \quad \\
+
P_{\infty}&=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T |\sin(2\pi t)|^2 dt \quad \\
&= \lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T 1 dt \quad \\
+
 
& = \lim_{T\rightarrow \infty} {1 \over {2T}} t \Big| ^T _{-T} \quad \\
+
\text{Similar to math above, the expression can be derived towards}\\
& = \lim_{T\rightarrow \infty} {1 \over {2T}} T - {1 \over {2T}} (-T) \quad \\
+
 
& = \lim_{T\rightarrow \infty} {1 \over {2}} + {1 \over {2}} \quad \\
+
&= \lim_{T\rightarrow \infty} {1 \over {2T}} (\int_{-T}^T \frac{1}{2} dt - \int_{-T}^T \frac{1}{2} * \cos(4\pi t) dt) \quad \\
&= 1
+
& = \lim_{T\rightarrow \infty} {1 \over {2T}} (\frac{1}{2} t \Big| ^T _{-T} - \frac{1}{8\pi} \int_{-T}^T \cos(4\pi t) d(4\pi t)) \quad \\
 +
& = \lim_{T\rightarrow \infty} {1 \over {2T}} ((\frac{1}{2}T - \frac{1}{2}(-T)) - \frac{1}{8\pi} (\sin(4\pi t)) \Big| ^T _{-T})  \quad \\
 +
& = \lim_{T\rightarrow \infty} {1 \over {2T}} (T - \frac{1}{8\pi} (\sin(4\pi T) - \sin(4\pi T)) \quad \\
 +
&= \lim_{T\rightarrow \infty} {1 \over {2T}} (T) \quad \\
 +
&= \lim_{T\rightarrow \infty} {1 \over {2}} \quad \\
 +
&= \frac{1}{2} \quad \\
 
\end{align}
 
\end{align}
 
</math>
 
</math>
  
So <math class="inline">P_{\infty} = 1 </math>.
+
So <math class="inline">P_{\infty} = \frac{1}{2}  </math>.
  
  

Latest revision as of 09:09, 22 January 2018


Practice Question on "Signals and Systems"


More Practice Problems


Topic: Signal Energy and Power


Question

Compute the energy $ E_\infty $ and the power $ P_\infty $ of the following continuous-time signal

$ x(t)= \sin (2 \pi t) $


What properties of the complex magnitude can you use to check your answer?


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1=

$ \begin{align} E_{\infty}&=\int_{-\infty}^\infty |\sin(2 \pi t)|^2 dt \\ &=\int_{-\infty}^\infty \sin^2(2 \pi t) dt \end{align} $


But $ \cos(2x) = \cos^2(x)-\sin^2(x)=1-2\sin^2(x). $

and therefore $ \sin^2x = \frac{1-\cos(2x)}{2} $.

$ \begin{align} E_{\infty}&=\int_{-\infty}^\infty \frac{1-\cos(4 \pi t)}{2} dt \\ &=\int_{-\infty}^\infty \frac{1}{2} dt - \int_{-\infty}^\infty \frac{\cos(4\pi t)}{2} dt \\ &\\ &=\infty \end{align} $


So $ E_{\infty} = \infty $.

$ \begin{align} P_{\infty}&=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T |\sin(2\pi t)|^2 dt \quad \\ \text{Similar to math above, the expression can be derived towards}\\ &= \lim_{T\rightarrow \infty} {1 \over {2T}} (\int_{-T}^T \frac{1}{2} dt - \int_{-T}^T \frac{1}{2} * \cos(4\pi t) dt) \quad \\ & = \lim_{T\rightarrow \infty} {1 \over {2T}} (\frac{1}{2} t \Big| ^T _{-T} - \frac{1}{8\pi} \int_{-T}^T \cos(4\pi t) d(4\pi t)) \quad \\ & = \lim_{T\rightarrow \infty} {1 \over {2T}} ((\frac{1}{2}T - \frac{1}{2}(-T)) - \frac{1}{8\pi} (\sin(4\pi t)) \Big| ^T _{-T}) \quad \\ & = \lim_{T\rightarrow \infty} {1 \over {2T}} (T - \frac{1}{8\pi} (\sin(4\pi T) - \sin(4\pi T)) \quad \\ &= \lim_{T\rightarrow \infty} {1 \over {2T}} (T) \quad \\ &= \lim_{T\rightarrow \infty} {1 \over {2}} \quad \\ &= \frac{1}{2} \quad \\ \end{align} $

So $ P_{\infty} = \frac{1}{2} $.



Answer 2


Back to ECE301 Spring 2018 Prof. Boutin

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn