(Created page with full voltage equation steps)
 
m (Disambiguate terms by having problems within questions)
 
(One intermediate revision by the same user not shown)
Line 13: Line 13:
 
----
 
----
 
----
 
----
==Question 3==
+
==Problem 3==
 
===<small>Voltage Equation Transformation</small>===
 
===<small>Voltage Equation Transformation</small>===
  
To move from the rotor reference frame (or rotor phase variables) to the stationary reference frame, pre-multiply by <math>\mathbf{K}_r^s = \begin{bmatrix} -\sin\left(\theta_r\right) & -\cos\left(\theta_r\right) \\ -\cos\left(\theta_r\right) & +\sin(\left(\theta_r\right) \end{bmatrix}</math>. To do the opposite and move from the stationary reference frame to the rotor reference frame (or rotor phase variables), pre-multiply by <math>\mathbf{K}_s^r = \left(\mathbf{K}_r^s\right)^{-1}</math>.
+
To move from the rotor reference frame (or rotor phase variables) to the stationary reference frame, pre-multiply by <math>\mathbf{K}_r^s = \begin{bmatrix} -\sin\left(\theta_r\right) & -\cos\left(\theta_r\right) \\ -\cos\left(\theta_r\right) & +\sin\left(\theta_r\right) \end{bmatrix}</math>. To do the opposite and move from the stationary reference frame to the rotor reference frame (or rotor phase variables), pre-multiply by <math>\mathbf{K}_s^r = \left(\mathbf{K}_r^s\right)^{-1}</math>.
  
 
The voltage equation is the first to be transformed.
 
The voltage equation is the first to be transformed.
Line 29: Line 29:
  
 
<math>\begin{align}
 
<math>\begin{align}
\mathbf{K}_r^s \left(\mathit{p} \mathbf{K}_s^r\right) &= \begin{bmatrix} -\sin\left(\theta_r\right) & -\cos\left(\theta_r\right) \\ -\cos\left(\theta_r\right) & +\sin(\left(\theta_r\right) \end{bmatrix} \omega_r \begin{bmatrix} -\cos\left(\theta_r\right) & +\sin\left(\theta_r\right) \\ +\sin\left(\theta_r\right) & +\cos(\left(\theta_r\right) \end{bmatrix} \\
+
\mathbf{K}_r^s \left(\mathit{p} \mathbf{K}_s^r\right) &= \begin{bmatrix} -\sin\left(\theta_r\right) & -\cos\left(\theta_r\right) \\ -\cos\left(\theta_r\right) & +\sin\left(\theta_r\right) \end{bmatrix} \omega_r \begin{bmatrix} -\cos\left(\theta_r\right) & +\sin\left(\theta_r\right) \\ +\sin\left(\theta_r\right) & +\cos\left(\theta_r\right) \end{bmatrix} \\
 
\mathbf{K}_r^s \left(\mathit{p} \mathbf{K}_s^r\right) &= \omega_r \begin{bmatrix} 0 & -1 \\ +1 & 0 \end{bmatrix}
 
\mathbf{K}_r^s \left(\mathit{p} \mathbf{K}_s^r\right) &= \omega_r \begin{bmatrix} 0 & -1 \\ +1 & 0 \end{bmatrix}
 
\end{align}</math>
 
\end{align}</math>
Line 40: Line 40:
  
 
===<small>Flux Linkage Equation Transformation</small>===
 
===<small>Flux Linkage Equation Transformation</small>===
 +
 +
Similar steps are used for the flux linkage equation.
 +
 +
<math>\begin{align}
 +
\vec{\lambda}_{qdr}^{s'} &= \mathbf{K}_r^s \vec{\lambda}_{12r}^{'} \\
 +
\vec{\lambda}_{qdr}^{s'} &= \mathbf{K}_r^s L_m \begin{bmatrix} +\cos\left(\theta_r\right) & -\sin\left(\theta_r\right) \\ -\sin\left(\theta_r\right) & -\cos\left(\theta_r\right) \end{bmatrix} \mathbf{K}_s^s \vec{i}_{qds}^{s} \\
 +
\vec{\lambda}_{qdr}^{s'} &= L_m \begin{bmatrix} -\sin\left(\theta_r\right) & -\cos\left(\theta_r\right) \\ -\cos\left(\theta_r\right) & +\sin(\left(\theta_r\right) \end{bmatrix} \begin{bmatrix} +\cos\left(\theta_r\right) & -\sin\left(\theta_r\right) \\ -\sin\left(\theta_r\right) & -\cos\left(\theta_r\right) \end{bmatrix} \begin{bmatrix} +1 & 0 \\ 0 & -1 \end{bmatrix} \vec{i}_{qds}^{s} \\
 +
\vec{\lambda}_{qdr}^{s'} &= L_m \begin{bmatrix} 0 & +1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} +1 & 0 \\ 0 & -1 \end{bmatrix} \vec{i}_{qds}^{s}
 +
\end{align}</math>
 +
 +
The flux linkage equation is finished.
 +
 +
<math>\begin{equation}
 +
\boxed{\vec{\lambda}_{qdr}^{s'} = L_m \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \vec{i}_{qds}^{s}}
 +
\end{equation}</math>
 +
 +
===<small>Frequency of Balanced Circuit Variables</small>===
 +
 +
The stator circuit variables have an input radial frequency of <math>\omega_e</math>. The frequency of circuit variables is the input frequency with respect to a stationary reference minus the radial speed of the arbitrary reference frame. In this case, the speed of the currents, voltages, and flux linkages in the stationary reference frame is <math>\omega_e - 0 = \boxed{\omega_e}</math>.
  
 
----
 
----

Latest revision as of 12:49, 16 January 2018


Answers and Discussions for

ECE Ph.D. Qualifying Exam ES-1 August 2007



Problem 3

Voltage Equation Transformation

To move from the rotor reference frame (or rotor phase variables) to the stationary reference frame, pre-multiply by $ \mathbf{K}_r^s = \begin{bmatrix} -\sin\left(\theta_r\right) & -\cos\left(\theta_r\right) \\ -\cos\left(\theta_r\right) & +\sin\left(\theta_r\right) \end{bmatrix} $. To do the opposite and move from the stationary reference frame to the rotor reference frame (or rotor phase variables), pre-multiply by $ \mathbf{K}_s^r = \left(\mathbf{K}_r^s\right)^{-1} $.

The voltage equation is the first to be transformed.

$ \begin{align} \vec{v}_{qdr}^{s'} &= \mathbf{K}_r^s \vec{v}_{12r}^{'} \\ \vec{v}_{qdr}^{s'} &= \mathbf{K}_r^s \mathbf{r}_r^{'} \left(\mathbf{K}_s^r \vec{i}_{qdr}^{s'}\right) + \mathbf{K}_r^s \mathit{p} \left(\mathbf{K}_s^r \vec{\lambda}_{qdr}^{s'}\right) \\ \vec{v}_{qdr}^{s'} &= r_r^{'} \cancelto{\mathbf{I}_2}{\mathbf{K}_r^s \mathbf{I}_2 \mathbf{K}_s^r} \vec{i}_{qdr}^{s'} + \mathbf{K}_r^s \left(\mathit{p} \mathbf{K}_s^r\right) \vec{\lambda}_{qdr}^{s'} + \cancelto{\mathbf{I}_2}{\mathbf{K}_r^s \mathbf{K}_s^r} \mathit{p}\vec{\lambda}_{qdr}^{s'} \end{align} $

The property that $ \mathbf{r}_r^{'} = r_r^{'} \mathbf{I}_2 $ was exploited with the commutative nature of scalar multiplication to simplify the first term. The Product Rule is applied for $ \mathit{p} \left(\mathbf{K}_s^r \vec{\lambda}_{qdr}^{s'}\right) $ to produce two terms, the latter of which also simplifies due to $ \mathbf{K}_r^s $ and $ \mathbf{K}_s^r $ being matrix inverses. A detour is needed to simplify the middle term. Using the First Fundamental Theorem of Calculus, $ \mathit{p}\theta_r(t) = \mathit{p} \int_{\tau = 0}^{t} \omega_r(\tau) \, d\tau + \mathit{p}\theta_r(0) = \omega_r(t) $.

$ \begin{align} \mathbf{K}_r^s \left(\mathit{p} \mathbf{K}_s^r\right) &= \begin{bmatrix} -\sin\left(\theta_r\right) & -\cos\left(\theta_r\right) \\ -\cos\left(\theta_r\right) & +\sin\left(\theta_r\right) \end{bmatrix} \omega_r \begin{bmatrix} -\cos\left(\theta_r\right) & +\sin\left(\theta_r\right) \\ +\sin\left(\theta_r\right) & +\cos\left(\theta_r\right) \end{bmatrix} \\ \mathbf{K}_r^s \left(\mathit{p} \mathbf{K}_s^r\right) &= \omega_r \begin{bmatrix} 0 & -1 \\ +1 & 0 \end{bmatrix} \end{align} $

The voltage equation is finished.

$ \begin{equation} \boxed{\vec{v}_{qdr}^{s'} = r_r^{'} \vec{i}_{qdr}^{s'} + \omega_r \begin{bmatrix} 0 & -1 \\ +1 & 0 \end{bmatrix} \vec{\lambda}_{qdr}^{s'} + \mathit{p}\vec{\lambda}_{qdr}^{s'}} \end{equation} $

Flux Linkage Equation Transformation

Similar steps are used for the flux linkage equation.

$ \begin{align} \vec{\lambda}_{qdr}^{s'} &= \mathbf{K}_r^s \vec{\lambda}_{12r}^{'} \\ \vec{\lambda}_{qdr}^{s'} &= \mathbf{K}_r^s L_m \begin{bmatrix} +\cos\left(\theta_r\right) & -\sin\left(\theta_r\right) \\ -\sin\left(\theta_r\right) & -\cos\left(\theta_r\right) \end{bmatrix} \mathbf{K}_s^s \vec{i}_{qds}^{s} \\ \vec{\lambda}_{qdr}^{s'} &= L_m \begin{bmatrix} -\sin\left(\theta_r\right) & -\cos\left(\theta_r\right) \\ -\cos\left(\theta_r\right) & +\sin(\left(\theta_r\right) \end{bmatrix} \begin{bmatrix} +\cos\left(\theta_r\right) & -\sin\left(\theta_r\right) \\ -\sin\left(\theta_r\right) & -\cos\left(\theta_r\right) \end{bmatrix} \begin{bmatrix} +1 & 0 \\ 0 & -1 \end{bmatrix} \vec{i}_{qds}^{s} \\ \vec{\lambda}_{qdr}^{s'} &= L_m \begin{bmatrix} 0 & +1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} +1 & 0 \\ 0 & -1 \end{bmatrix} \vec{i}_{qds}^{s} \end{align} $

The flux linkage equation is finished.

$ \begin{equation} \boxed{\vec{\lambda}_{qdr}^{s'} = L_m \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \vec{i}_{qds}^{s}} \end{equation} $

Frequency of Balanced Circuit Variables

The stator circuit variables have an input radial frequency of $ \omega_e $. The frequency of circuit variables is the input frequency with respect to a stationary reference minus the radial speed of the arbitrary reference frame. In this case, the speed of the currents, voltages, and flux linkages in the stationary reference frame is $ \omega_e - 0 = \boxed{\omega_e} $.


Discussion



Back to ES-1, August 2007

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010