(Created page with "Category:ECE Category:QE Category:MN Category:problem solving Category:Dynamics <center> <font size= 4> ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Ex...")
 
 
Line 16: Line 16:
 
</font size>
 
</font size>
  
August 2007
+
August 2008
 
</center>
 
</center>
 
----
 
----
 
----
 
----
 
==Questions==
 
==Questions==
All questions are in this [https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_07/MN-2%20QE%2007.pdf link]
+
All questions are in this [https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_08/MN-2%20QE%2008.pdf link]
  
 
=Solutions of all questions=
 
=Solutions of all questions=
  
1)
+
1) <math>
A) Forward
+
 
+
B)  <math>10^{16}cm^{-3}</math>
+
 
+
C) <math>10^{14}cm^{-3}</math>
+
 
+
D) <math>10^{9}\times10^{14} = n_i^2</math>
+
<math>\implies n_i = 10^{23/2}</math>
+
 
+
E) Yes.
+
 
+
F) <math>
+
 
\begin{align*}
 
\begin{align*}
\triangle P_n&=10^{12}-10^9\approx 10^{12}\\
+
D_p &= \frac{kT}{q}\cdot\mu_p\\
\triangle P_n&=\frac{n_i^2}{N_D}(e^{qV_A/kT}-1)=10^{12}\\
+
&= 0.025\times 400 = 10cm^2/sec\\
&\implies e^{qV_A/kT} = 10^3\\
+
D_n&= \frac{kT}{q}\cdot\mu_n = 0.025\times1000=25cm^2/s
&\implies V_A = 0.026\times\ln(10^3) = 0.026\times6.9\\
+
&= 0.17 V
+
 
\end{align*}
 
\end{align*}
 
</math>
 
</math>
Line 51: Line 37:
 
<math>
 
<math>
 
\begin{align*}
 
\begin{align*}
|I_E| & = qD_p\frac{10^{10}}{0.1\times10^{-4}} = 1.8\times10^{16}q\\
+
\beta &\approx \frac{D_n}{D_p}\cdot\frac{W_E}{W_B}\cdot\frac{N_E}{N_B}\cdot\frac{n_{iB}^2}{n_{iE}^2}\\
|I_B| & = qD_n\frac{10^{8}}{0.2\times10^{-4}} = 1.8\times10^{14}q\\
+
&=\frac{25}{10}\times\frac{1}{0.5}\times\frac{3\times10^{18}}{3\times10^{17}}\\
\beta + 1 &= \frac{|I_E|}{|I_B|}\approx 67\\
+
&= 50
&\therefore \beta= 66 \text{ (chk)}
+
 
\end{align*}
 
\end{align*}
 
</math>
 
</math>
Line 60: Line 45:
 
  ------------------------------------------------------------------------------------
 
  ------------------------------------------------------------------------------------
 
3)
 
3)
A)
 
 
  <math>
 
  <math>
\alpha_T = \frac{0.997J_0}{0.998J_0} = 0.99
 
</math>
 
 
B)
 
<math>
 
\gamma = \frac{0.998J_0}{(0.998+0.002)J_0} = 0.998
 
</math>
 
 
C)D)
 
  <math>
 
 
  \begin{align*}
 
  \begin{align*}
\alpha_{dc} &= \gamma\cdot\alpha_T\\
+
\tau_b &= \frac{W_B^2}{2D_n} = \frac{(0.5\times10^{-4})^2}{2\times25}\\
&=0.98802
+
&=5\times10^{-11}sec
\end{align*}
+
\end{align*}
</math>
+
<math>
+
\beta_{dc} = \frac{\alpha_{dc}}{1-\alpha_{dc}}\approx 82
+
</math>
+
<math>
+
\begin{align*}
+
I_E &= (0.998+0.002)J_0 = J_0\\
+
I_C &= 0.997J_0\\
+
I_B &= I_E-I_C = 0.003J_0
+
\end{align*}
+
 
</math>
 
</math>
  
 
  ------------------------------------------------------------------------------------
 
  ------------------------------------------------------------------------------------
  4)
+
  4) (chk, confusion)
 
  <math>
 
  <math>
\text{Derivation of } \beta = \frac{D_n}{D_p}\cdot\frac{W_E}{W_B}\cdot\frac{N_E}{N_B}\cdot\frac{n_{iB}^2}{n_{iE}^2}
+
\begin{align*}
 +
\beta &= \frac{D_n}{D_p}\cdot\frac{W_E}{L_B}\cdot\frac{N_E}{N_B}\cdot\frac{n_{iB}^2}{n_{iE}^2}\\
 +
&=\beta_{initial}\times\frac{W_B}{L_B}\\
 +
L_B&=\sqrt{D_n\tau_b} = \sqrt{25\times250\times10^{-12}}\\
 +
&=25\times10^{-11/2}\\
 +
\therefore\beta&=50\times0.6\\
 +
&=30
 +
\end{align*}
 
</math>
 
</math>
  

Latest revision as of 21:18, 5 August 2017


ECE Ph.D. Qualifying Exam

MICROELECTRONICS and NANOTECHNOLOGY (MN)

Question 2: Junction Devices

August 2008



Questions

All questions are in this link

Solutions of all questions

1) $ \begin{align*} D_p &= \frac{kT}{q}\cdot\mu_p\\ &= 0.025\times 400 = 10cm^2/sec\\ D_n&= \frac{kT}{q}\cdot\mu_n = 0.025\times1000=25cm^2/s \end{align*} $

 ------------------------------------------------------------------------------------

2) $ \begin{align*} \beta &\approx \frac{D_n}{D_p}\cdot\frac{W_E}{W_B}\cdot\frac{N_E}{N_B}\cdot\frac{n_{iB}^2}{n_{iE}^2}\\ &=\frac{25}{10}\times\frac{1}{0.5}\times\frac{3\times10^{18}}{3\times10^{17}}\\ &= 50 \end{align*} $

------------------------------------------------------------------------------------

3)

$   \begin{align*} \tau_b &= \frac{W_B^2}{2D_n} = \frac{(0.5\times10^{-4})^2}{2\times25}\\ &=5\times10^{-11}sec \end{align*}  $
------------------------------------------------------------------------------------
4) (chk, confusion)
$   \begin{align*} \beta &= \frac{D_n}{D_p}\cdot\frac{W_E}{L_B}\cdot\frac{N_E}{N_B}\cdot\frac{n_{iB}^2}{n_{iE}^2}\\ &=\beta_{initial}\times\frac{W_B}{L_B}\\ L_B&=\sqrt{D_n\tau_b} = \sqrt{25\times250\times10^{-12}}\\ &=25\times10^{-11/2}\\ \therefore\beta&=50\times0.6\\ &=30 \end{align*}  $
------------------------------------------------------------------------------------



Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn