(One intermediate revision by the same user not shown)
Line 30: Line 30:
 
E = \pm\alpha\sqrt{k_x^x+k_y^2}
 
E = \pm\alpha\sqrt{k_x^x+k_y^2}
 
</math>
 
</math>
 +
 
Let ; <math>k=\pm\sqrt{k_x^x+k_y^2}</math>
 
Let ; <math>k=\pm\sqrt{k_x^x+k_y^2}</math>
 +
 
<math>
 
<math>
 
\therefore E = \alpha k
 
\therefore E = \alpha k
 
</math>
 
</math>
 +
 
<math>
 
<math>
 
\begin{align*}
 
\begin{align*}
Line 51: Line 54:
 
\end{align*}
 
\end{align*}
 
</math>
 
</math>
 +
 
Taking <math>E_c = 0</math>
 
Taking <math>E_c = 0</math>
 +
 
  <math>
 
  <math>
 
n = \frac{E_F^2}{4\alpha^2\pi}
 
n = \frac{E_F^2}{4\alpha^2\pi}
 
</math>
 
</math>
 
   
 
   
[[Image:MN1_2007_1.png|Alt text|1118x392px]]
+
[[Image:MN1_2007_1.png|Alt text|320x220px]]
  
 
  ------------------------------------------------------------------------------------
 
  ------------------------------------------------------------------------------------
Line 68: Line 73:
 
</math>
 
</math>
  
[[Image:MN1_2007_2.png]]
+
[[Image:MN1_2007_2.png|Alt text|400x400px]]
  
 
<math>
 
<math>

Latest revision as of 10:02, 6 August 2017


ECE Ph.D. Qualifying Exam

MICROELECTRONICS and NANOTECHNOLOGY (MN)

Question 1: Semiconductor Fundamentals

August 2007



Questions

All questions are in this link

Solutions of all questions

1)

$ E = \pm\alpha\sqrt{k_x^x+k_y^2} $

Let ; $ k=\pm\sqrt{k_x^x+k_y^2} $

$ \therefore E = \alpha k $

$ \begin{align*} D(E) &= \frac{1}{2\pi}k\frac{dk}{dE}\\ &= \frac{1}{2\pi}\cdot\frac{E}{\alpha}\cdot\frac{1}{\alpha} = \frac{E}{2\pi\alpha^2} \end{align*} $

------------------------------------------------------------------------------------
2)

$  \begin{align*} n&=\int_{E_c}^{E_f}D(E)dE\\ &=\int_{E_c}^{E_f}\frac{E}{2\alpha^2}\cdot dE\\ &=\frac{1}{4\alpha^2}(E_F^2 - E_c^2) \end{align*}  $

Taking $ E_c = 0 $

$  n = \frac{E_F^2}{4\alpha^2\pi}  $

320x220px

------------------------------------------------------------------------------------
3)
$  \begin{align*} F &= -qE =qE_x \hspace{0.5cm} [\because E = -\hat{x}E_x]\\ F&= \frac{d(\hslash k)}{dt} \end{align*}  $

400x400px

$ \implies \int_0^{k_x}dk = \frac{1}{\hslash}\int_0^t Fdt $ $ \implies k_x = \frac{qE_xt}{\hslash} $ $ E = \alpha k $ $ V = \frac{1}{\hslash}\frac{dE}{dk} = \frac{\alpha}{\hslash} $ $ x = \int_0^tVdt = \frac{\alpha}{\hslash}t $




Back to ECE Qualifying Exams (QE) page

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett