(5 intermediate revisions by the same user not shown)
Line 26: Line 26:
  
 
1)  
 
1)  
 +
 
<math>
 
<math>
\begin{align*}
+
E = \pm\alpha\sqrt{k_x^x+k_y^2}
n& = \int_{E_c}^\infty D(E)f(E)dE\\
+
&=\int_{E_c}^\infty\frac{2(E - E_c)}{\pi\hslash^2V_F^2}\cdot\frac{1}{1+e^{(E-E_F)/kT}}dE
+
\end{align*}
+
 
</math>
 
</math>
  
  Let;  
+
Let ; <math>k=\pm\sqrt{k_x^x+k_y^2}</math>
  
 
<math>
 
<math>
\begin{align*}
+
\therefore E = \alpha k
\eta &=\frac{E-E_c}{kT}\:\:\:\:\:\:\therefore dE = kTd\eta\\
+
\eta_c &=\frac{E_F-E_c}{kT}
+
\end{align*}
+
 
</math>
 
</math>
  
  <math>
+
<math>
 
\begin{align*}
 
\begin{align*}
n& = \frac{2}{\pi\hslash^2V_F^2}\cdot(kT)^2\int_0^\infty\frac{\eta d\eta}{1+e^{\eta-\eta_c}}\\
+
D(E) &= \frac{1}{2\pi}k\frac{dk}{dE}\\
&=\frac{2(kT)^2}{\pi\hslash^2V_F^2}\cdot\cancelto{1!}{\Gamma 2}\cdot F_1(\eta_c)\\
+
&= \frac{1}{2\pi}\cdot\frac{E}{\alpha}\cdot\frac{1}{\alpha} = \frac{E}{2\pi\alpha^2}
&=\frac{2(kT)^2}{\pi\hslash^2V_F^2} F_1(\eta_c)\\
+
 
\end{align*}
 
\end{align*}
 
</math>
 
</math>
  
  ------------------------------------------------------------------------------------
+
------------------------------------------------------------------------------------
 
+
2)
2)
+
 
+
<math>
At <math>T = 0\:\:\:\:\:f(E) = 1</math> for <math>E\le E_F</math>
+
 
+
<math>
+
 
\begin{align*}
 
\begin{align*}
\therefore n &=\int_{E_c}^{E_F}D(E)dE\\
+
n&=\int_{E_c}^{E_f}D(E)dE\\
&=\int_{E_c}^{E_F}\frac{2(E-E_c)}{\pi\hslash^2V_F^2}dE\\
+
&=\int_{E_c}^{E_f}\frac{E}{2\alpha^2}\cdot dE\\
&=\frac{2}{\pi\hslash^2V_F^2}\cdot\frac{(E-E_c)^2}{2}\bigg\vert_{E_c}^{E_F}\\
+
&=\frac{1}{4\alpha^2}(E_F^2 - E_c^2)
&=\frac{(E_F-E_c)^2}{\pi\hslash^2V_F^2}
+
 
\end{align*}
 
\end{align*}
 
</math>
 
</math>
  
 +
Taking <math>E_c = 0</math>
  
------------------------------------------------------------------------------------\\
 
3)
 
For Maxwell Boltzmann Statistics
 
<math>F_1(\eta_c)\to e^{\eta_c}</math>
 
 
if
 
 
<math>\eta_c\le-3</math>
 
 
<math>E_F-E_c\le-3kT</math>
 
 
<math>E_c-E_F\ge3kT</math>
 
 
<math>\therefore n = \frac{2(kT)^2}{\pi\hslash^2V_F^2}\cdot e^{(E_F-E_c)/kT}</math>
 
 
------------------------------------------------------------------------------------\\
 
4)
 
 
<math>\bar{u} = \frac{\int_{E_c}^\infty D(E)f(E)(E-E_c)dE}{\int_{E_c}^\infty D(E)f(E)dE}</math>
 
 
from (1);
 
 
  <math>
 
  <math>
\begin{align*}
+
n = \frac{E_F^2}{4\alpha^2\pi}
\text{Denominator} &= \frac{2(kT)^2}{\pi\hslash^2V_F^2}F_1(\eta_c)\\
+
</math>
\text{Numerator} &= \int_{E_c}^\infty\frac{2(E-E_c)^2}{\pi\hslash^2V_F^2}\cdot\frac{1}{1+e^{(E-E_F)/kT}}dE\\
+
&=\frac{2}{\pi\hslash^2V_F^2}(kT)^3\int_0^\infty\frac{\eta^2d\eta}{1+e^{\eta-\eta_c}}\\
+
[[Image:MN1_2007_1.png|Alt text|320x220px]]
&=\frac{2(kT)^3}{\pi\hslash^2V_F^2}\cdot\cancelto{2!}{\Gamma 3}\cdot F_2(\eta_c)\\
+
&=\frac{4(kT)^3}{\pi\hslash^2V_F^2} F_2(\eta_c)
+
\end{align*}
+
</math>
+
  
<math>\therefore\bar{u} = 2kT\frac{F_2(\eta_c)}{F_1(\eta_c)}</math>
+
  ------------------------------------------------------------------------------------
 
+
3)
 
+
  ------------------------------------------------------------------------------------\\
+
5)
+
At <math>T=0</math>
+
 
+
<math>\bar{u} = \frac{\int_{E_c}^E D(E)(E-E_c)dE}{\int_{E_c}^{E_F} D(E)dE}</math>
+
  
 
  <math>
 
  <math>
\begin{align*}
+
\begin{align*}
n &= D(E)f(E)\\
+
F &= -qE =qE_x \hspace{0.5cm} [\because E = -\hat{x}E_x]\\
&=\frac{\int(E-E_c)D(E)f(E)}{\int D(E)f(E)dE}
+
F&= \frac{d(\hslash k)}{dt}
\end{align*}
+
\end{align*}
 
</math>
 
</math>
  
<math>
+
[[Image:MN1_2007_2.png|Alt text|400x400px]]
\begin{align*}
+
\text{Denominator} &= \frac{(E_F-E_c)^2}{\pi\hslash^2V_F^2}\\
+
\text{Numerator} &= \int_{E_c}^{E_F}\frac{2(E-E_c)^2}{\pi\hslash^2V_F^2}dE\\
+
&=\frac{2}{\pi\hslash^2V_F}\cdot\frac{(E-E_c)^3}{3}\bigg\vert_{E_c}^{E_F}\\
+
&=\frac{2(E_F-E_c)^3}{3\pi\hslash^2V_F}
+
\end{align*}
+
</math>
+
  
<math>\therefore\bar{u} = \frac{2}{3}(E_F - E_c)</math>
+
<math>
 
+
\implies \int_0^{k_x}dk = \frac{1}{\hslash}\int_0^t Fdt
 
+
</math>
------------------------------------------------------------------------------------\\
+
<math>
6)
+
\implies k_x = \frac{qE_xt}{\hslash}
For Maxwell-Boltzmann statistics
+
</math>
At <math>T=0</math>
+
<math>
 
+
E = \alpha k
<math>F_1(\eta_c) = F_2(\eta_c)\to e^{\eta_c}</math>
+
</math>
 
+
<math>
<math>\therefore \bar{u} = 2kT.</math>
+
V = \frac{1}{\hslash}\frac{dE}{dk} = \frac{\alpha}{\hslash}
 +
</math>
 +
<math>
 +
x = \int_0^tVdt = \frac{\alpha}{\hslash}t
 +
</math>
  
------------------------------------------------------------------------------------\\
 
 
   
 
   
  

Latest revision as of 10:02, 6 August 2017


ECE Ph.D. Qualifying Exam

MICROELECTRONICS and NANOTECHNOLOGY (MN)

Question 1: Semiconductor Fundamentals

August 2007



Questions

All questions are in this link

Solutions of all questions

1)

$ E = \pm\alpha\sqrt{k_x^x+k_y^2} $

Let ; $ k=\pm\sqrt{k_x^x+k_y^2} $

$ \therefore E = \alpha k $

$ \begin{align*} D(E) &= \frac{1}{2\pi}k\frac{dk}{dE}\\ &= \frac{1}{2\pi}\cdot\frac{E}{\alpha}\cdot\frac{1}{\alpha} = \frac{E}{2\pi\alpha^2} \end{align*} $

------------------------------------------------------------------------------------
2)

$  \begin{align*} n&=\int_{E_c}^{E_f}D(E)dE\\ &=\int_{E_c}^{E_f}\frac{E}{2\alpha^2}\cdot dE\\ &=\frac{1}{4\alpha^2}(E_F^2 - E_c^2) \end{align*}  $

Taking $ E_c = 0 $

$  n = \frac{E_F^2}{4\alpha^2\pi}  $

320x220px

------------------------------------------------------------------------------------
3)
$  \begin{align*} F &= -qE =qE_x \hspace{0.5cm} [\because E = -\hat{x}E_x]\\ F&= \frac{d(\hslash k)}{dt} \end{align*}  $

400x400px

$ \implies \int_0^{k_x}dk = \frac{1}{\hslash}\int_0^t Fdt $ $ \implies k_x = \frac{qE_xt}{\hslash} $ $ E = \alpha k $ $ V = \frac{1}{\hslash}\frac{dE}{dk} = \frac{\alpha}{\hslash} $ $ x = \int_0^tVdt = \frac{\alpha}{\hslash}t $




Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood