Line 1: | Line 1: | ||
2) | 2) | ||
+ | |||
+ | Biot-Savart: | ||
<math> | <math> | ||
\begin{equation*} | \begin{equation*} | ||
− | + | d\bar{H}=\frac{I(\bar{R})d\bar{l}\times(\bar{R}-\bar{R}')}{4\pi|\bar{R}-\bar{R}'|^3} | |
\end{equation*} | \end{equation*} | ||
</math> | </math> | ||
Line 13: | Line 15: | ||
\bar{R}&= 0\hat{x}+0\hat{y}+0\hat{z}\\ | \bar{R}&= 0\hat{x}+0\hat{y}+0\hat{z}\\ | ||
\bar{R}'&=y\hat{y}\\ | \bar{R}'&=y\hat{y}\\ | ||
− | + | |\bar{R}-\bar{R}'|&=y \\ | |
d\bar{l}&= (dy)\hat{y} | d\bar{l}&= (dy)\hat{y} | ||
\end{align*} | \end{align*} | ||
Line 20: | Line 22: | ||
<math> | <math> | ||
\begin{equation*} | \begin{equation*} | ||
− | d\bar{H}=\frac{(Idy)\hat{y}\times(-y\hat{y})}{4\pi | + | d\bar{H}=\frac{(Idy)\hat{y}\times(-y\hat{y})}{4\pi|y|^3}=0 \longrightarrow \boxed{\bar{H}=0} |
\end{equation*} | \end{equation*} | ||
</math> | </math> |
Latest revision as of 18:44, 18 June 2017
2)
Biot-Savart:
$ \begin{equation*} d\bar{H}=\frac{I(\bar{R})d\bar{l}\times(\bar{R}-\bar{R}')}{4\pi|\bar{R}-\bar{R}'|^3} \end{equation*} $
$ \begin{align*} \bar{R}&= 0\hat{x}+0\hat{y}+0\hat{z}\\ \bar{R}'&=y\hat{y}\\ |\bar{R}-\bar{R}'|&=y \\ d\bar{l}&= (dy)\hat{y} \end{align*} $
$ \begin{equation*} d\bar{H}=\frac{(Idy)\hat{y}\times(-y\hat{y})}{4\pi|y|^3}=0 \longrightarrow \boxed{\bar{H}=0} \end{equation*} $
$ \begin{align*} \text{\underline{Ampere}:}& & \nabla\times\bar{H}&=\bar{J} & &\longrightarrow& & \oint \bar{H}\cdot d\bar{l}&=I_{enc}\\ \text{at the origin:}& & I_{enc}&=0 & &\longrightarrow& & \boxed{\bar{H}=0} \end{align*} $