(16 intermediate revisions by the same user not shown) | |||
Line 5: | Line 5: | ||
<font size="4"> Communication Networks Signal and Image processing (CS) </font> | <font size="4"> Communication Networks Signal and Image processing (CS) </font> | ||
− | <font size="4"> [[QE637_sol2013|Question 5, August 2013(Published on May 2017)]] | + | <font size="4"> [[QE637_sol2013|Question 5, August 2013(Published on May 2017)]]</font> |
+ | </center> | ||
<font size="4">[[ QE637_sol2013_Q1 | Problem 1]],[[ QE637_sol2013_Q2 |2]]</font> | <font size="4">[[ QE637_sol2013_Q1 | Problem 1]],[[ QE637_sol2013_Q2 |2]]</font> | ||
− | |||
---- | ---- | ||
Line 15: | Line 15: | ||
a) | a) | ||
+ | |||
Since <math>{{f}_{k}}(\lambda ),\ for\ k=0,\ 1,\ 2</math> are the spectral response functions for the three color outputs of a color camera, and the negative spectrum can’t be produced, they must be nonnegative. | Since <math>{{f}_{k}}(\lambda ),\ for\ k=0,\ 1,\ 2</math> are the spectral response functions for the three color outputs of a color camera, and the negative spectrum can’t be produced, they must be nonnegative. | ||
b) | b) | ||
+ | |||
Since <math>{{r}_{0}}(\lambda ),\ {{g}_{0}}(\lambda ),\ and\ {{b}_{0}}(\lambda )</math> are the CIE color matching functions, they can be both positive and negative. The color matching function are given by | Since <math>{{r}_{0}}(\lambda ),\ {{g}_{0}}(\lambda ),\ and\ {{b}_{0}}(\lambda )</math> are the CIE color matching functions, they can be both positive and negative. The color matching function are given by | ||
<center> | <center> | ||
Line 29: | Line 31: | ||
− | c) | + | c) |
+ | |||
+ | <math>\begin{align} | ||
& F=\left[ \begin{matrix} | & F=\left[ \begin{matrix} | ||
{{F}_{1}} \\ | {{F}_{1}} \\ | ||
Line 63: | Line 67: | ||
</math> | </math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
d) | d) | ||
+ | |||
+ | Yes, they do exist, like CIE XYZ. CIE XYZ is defined in terms of CIE RGB so that | ||
<math>\left[ \begin{matrix} | <math>\left[ \begin{matrix} | ||
{{x}_{0}}(\lambda ) \\ | {{x}_{0}}(\lambda ) \\ | ||
Line 81: | Line 82: | ||
0.177 & 0.813 & 0.010 \\ | 0.177 & 0.813 & 0.010 \\ | ||
0.000 & 0.010 & 0.990 \\ | 0.000 & 0.010 & 0.990 \\ | ||
− | \end{matrix} \right]</math>. | + | \end{matrix} \right]</math> and |
+ | <math>\left\{ \begin{matrix} | ||
+ | {{x}_{0}}(\lambda )\ge 0 \\ | ||
+ | {{y}_{0}}(\lambda )\ge 0 \\ | ||
+ | {{z}_{0}}(\lambda )\ge 0 \\ | ||
+ | \end{matrix} \right.</math> | ||
+ | |||
Line 87: | Line 94: | ||
a) | a) | ||
+ | |||
Because for real pixels, measured energy from incident photons is always positive. | Because for real pixels, measured energy from incident photons is always positive. | ||
+ | |||
+ | <span style="color:green"> The student should mention the non-negativity inherence of the spectrum.</span> | ||
b) <math>{{r}_{0}}(\lambda ),\ {{g}_{0}}(\lambda ),\ and\ {{b}_{0}}(\lambda )</math>are the CIE color matching functions, and therefore can be negative. They go negative to match certain reference colors which are beyond the r, g, b primaries. | b) <math>{{r}_{0}}(\lambda ),\ {{g}_{0}}(\lambda ),\ and\ {{b}_{0}}(\lambda )</math>are the CIE color matching functions, and therefore can be negative. They go negative to match certain reference colors which are beyond the r, g, b primaries. | ||
+ | |||
+ | <span style="color:green"> The student should mention the saturated colors, which need negative color matching function .</span> | ||
c) | c) | ||
Line 136: | Line 148: | ||
d) | d) | ||
+ | |||
<math> | <math> | ||
+ | \begin{align} | ||
\left[ \begin{matrix} | \left[ \begin{matrix} | ||
r \\ | r \\ | ||
Line 142: | Line 156: | ||
b \\ | b \\ | ||
\end{matrix} \right]={{M}^{-1}}\left[ \begin{matrix} | \end{matrix} \right]={{M}^{-1}}\left[ \begin{matrix} | ||
− | { | + | {X} \\ |
− | { | + | {Y} \\ |
− | { | + | {Z} \\ |
\end{matrix} \right] \\ | \end{matrix} \right] \\ | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
+ | where X, Y, Z are the xyz tristimulus values (always positive): | ||
+ | <math> X=\frac{x}{x+y+z},Y=\frac{y}{x+y+z},Z=\frac{z}{x+y+z}</math> | ||
− | <span style="color:green"> The | + | <span style="color:green"> The three written formulas for tristimulus values are not correct, actually chromaticity ccordinates can be written as a function of tristimulus values (X, Y, Z) as follows: <math> x=\frac{X}{X+Y+Z},y=\frac{Y}{X+Y+Z},z=\frac{Z}{X+Y+Z}</math>. </span> |
+ | |||
+ | <span style="color:green">Also, the student should describe the CIE XYZ system. </span> | ||
---- | ---- | ||
Line 155: | Line 173: | ||
=== Related Problem === | === Related Problem === | ||
− | + | In a color matching experiment, the three primaries R, G, B are used to match the color of a pure spectral component at wavelength <math>\lambda</math>. (Assume that the color matching allows for color to be subtracted from the reference in the standard manner described in class.) | |
+ | At each wavelength <math>\lambda </math>, the matching color is given by | ||
− | <math> | + | <center><math>\left[ \begin{matrix} |
− | \left[ | + | R, & G, & B \\ |
− | R, G, B | + | \end{matrix} \right]\left[ \begin{matrix} |
− | \end{ | + | r(\lambda ) \\ |
− | \left[ | + | g(\lambda ) \\ |
− | r(\lambda)\\ | + | b(\lambda ) \\ |
− | g(\lambda)\\ | + | \end{matrix} \right]</math></center> |
− | b(\lambda) | + | where |
− | \end{ | + | <center><math>\begin{align} |
− | </ | + | & 1=\int\limits_{0}^{\infty }{r(\lambda )d\lambda } \\ |
+ | & 1=\int\limits_{0}^{\infty }{g(\lambda )d\lambda } \\ | ||
+ | & 1=\int\limits_{0}^{\infty }{b(\lambda )d\lambda } \\ | ||
+ | \end{align}</math> | ||
+ | </center> | ||
− | + | Further define the white point | |
− | + | <center> | |
− | + | <math>W=\left[ \begin{matrix} | |
− | <math> W = | + | R, & G, & B \\ |
− | \left[ | + | \end{matrix} \right]\left[ \begin{matrix} |
− | R, G, B | + | {{r}_{w}} \\ |
− | \end{ | + | {{g}_{w}} \\ |
− | \left[ | + | {{b}_{w}} \\ |
− | + | \end{matrix} \right]</math>. | |
− | + | </center> | |
− | + | Let <math>I(\lambda)</math> be the light reflected from a surface. | |
− | \end{ | + | |
− | </math> | + | |
− | + | ||
− | Let < | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | ( | + | a) Calculate <math>({{r}_{e}}, {{g}_{e}}, {{b}_{e}})</math> the tristimulus values for the spectral distribution <math>I(\lambda)</math> using primaries R, G, B and an equal energy white point. |
− | + | b) Calculate <math>({{r}_{c}}, {{g}_{c}}, {{b}_{c}})</math> the tristimulus values for the spectral distribution <math>I(\lambda)</math> using primaries R, G, B and white point <math>({{r}_{w}}, {{g}_{w}}, {{b}_{w}})</math>. | |
− | < | + | c) Calculate <math>({{r}_{\gamma }}, {{g}_{\gamma }}, {{b}_{\gamma }})</math> the gamma corrected tristimulus values for the spectral distribution <math>I(\lambda)</math> using primaries R, G, B and white point <math>({{r}_{w}}, {{g}_{w}}, {{b}_{w}})</math>, and <math>\gamma =2.2</math>. |
− | |||
− | (Refer to | + | (Refer to <u>[https://engineering.purdue.edu/~bouman/ece637/previous/ece637S2004/exams/final/exam.pdf ECE 637 Spring 2004 Final Exam Problem 4].</u>) |
---- | ---- |
Latest revision as of 20:06, 2 May 2017
Communication Networks Signal and Image processing (CS)
Solution 1:
a)
Since $ {{f}_{k}}(\lambda ),\ for\ k=0,\ 1,\ 2 $ are the spectral response functions for the three color outputs of a color camera, and the negative spectrum can’t be produced, they must be nonnegative.
b)
Since $ {{r}_{0}}(\lambda ),\ {{g}_{0}}(\lambda ),\ and\ {{b}_{0}}(\lambda ) $ are the CIE color matching functions, they can be both positive and negative. The color matching function are given by
$ \left\{ \begin{matrix} {{r}_{0}}(\lambda )={{r}^{+}}-{{r}^{-}} \\ {{g}_{0}}(\lambda )={{g}^{+}}-{{g}^{-}} \\ {{b}_{0}}(\lambda )=={{b}^{+}}-{{b}^{-}} \\ \end{matrix} \right. $
where $ {{r}^{+}},\ {{r}^{-}},\ {{g}^{+}},\ {{g}^{-}},\ {{b}^{+}},\ {{b}^{-}} $are the response to photons and must be positive, while the color matching function can be negative to produce a saturated color.
c)
$ \begin{align} & F=\left[ \begin{matrix} {{F}_{1}} \\ {{F}_{2}} \\ {{F}_{3}} \\ \end{matrix} \right]=\int\limits_{-\infty }^{\infty }{\left[ \begin{matrix} {{f}_{1}}(\lambda ) \\ {{f}_{2}}(\lambda ) \\ {{f}_{3}}(\lambda ) \\ \end{matrix} \right]}\ I(\lambda )\ d\lambda =\int\limits_{-\infty }^{\infty }{\left( M\left[ \begin{matrix} {{r}_{0}}(\lambda ) \\ {{g}_{0}}(\lambda ) \\ {{b}_{0}}(\lambda ) \\ \end{matrix} \right] \right)}\ I(\lambda )\ d\lambda=M\left( \int\limits_{-\infty }^{\infty }{\left[ \begin{matrix} {{r}_{0}}(\lambda ) \\ {{g}_{0}}(\lambda ) \\ {{b}_{0}}(\lambda ) \\ \end{matrix} \right]}\ I(\lambda )\ d\lambda \right)=M\left[ \begin{matrix} r \\ g \\ b \\ \end{matrix} \right]\ \\ & \Rightarrow\ \left[ \begin{matrix} r \\ g \\ b \\ \end{matrix} \right]={{M}^{-1}}\left[ \begin{matrix} {{F}_{1}} \\ {{F}_{2}} \\ {{F}_{3}} \\ \end{matrix} \right]={{M}^{-1}}_{{}}^{{}}{{F}^{t}} \\ \end{align} $
d)
Yes, they do exist, like CIE XYZ. CIE XYZ is defined in terms of CIE RGB so that $ \left[ \begin{matrix} {{x}_{0}}(\lambda ) \\ {{y}_{0}}(\lambda ) \\ {{z}_{0}}(\lambda ) \\ \end{matrix} \right]=M\ \left[ \begin{matrix} {{r}_{0}}(\lambda ) \\ {{g}_{0}}(\lambda ) \\ {{b}_{0}}(\lambda ) \\ \end{matrix} \right],\ where\ M=\left[ \begin{matrix} 0.490 & 0.310 & 0.200 \\ 0.177 & 0.813 & 0.010 \\ 0.000 & 0.010 & 0.990 \\ \end{matrix} \right] $ and $ \left\{ \begin{matrix} {{x}_{0}}(\lambda )\ge 0 \\ {{y}_{0}}(\lambda )\ge 0 \\ {{z}_{0}}(\lambda )\ge 0 \\ \end{matrix} \right. $
Solution 2:
a)
Because for real pixels, measured energy from incident photons is always positive.
The student should mention the non-negativity inherence of the spectrum.
b) $ {{r}_{0}}(\lambda ),\ {{g}_{0}}(\lambda ),\ and\ {{b}_{0}}(\lambda ) $are the CIE color matching functions, and therefore can be negative. They go negative to match certain reference colors which are beyond the r, g, b primaries.
The student should mention the saturated colors, which need negative color matching function .
c)
$ \begin{align} & \int\limits_{-\infty }^{\infty }{\left[ \begin{matrix} {{f}_{1}}(\lambda ) \\ {{f}_{2}}(\lambda ) \\ {{f}_{3}}(\lambda ) \\ \end{matrix} \right]}\left[ \begin{matrix} I(\lambda )d\lambda & I(\lambda )d\lambda & I(\lambda )d\lambda \\ \end{matrix} \right]=\int\limits_{-\infty }^{\infty }{M\left[ \begin{matrix} {{r}_{0}}(\lambda ) \\ {{g}_{0}}(\lambda ) \\ {{b}_{0}}(\lambda ) \\ \end{matrix} \right]}\left[ \begin{matrix} I(\lambda )d\lambda & I(\lambda )d\lambda & I(\lambda )d\lambda \\ \end{matrix} \right] \\ & \Rightarrow \left[ \begin{matrix} \int\limits_{-\infty }^{\infty }{{{f}_{1}}(\lambda )I(\lambda )d\lambda } \\ \int\limits_{-\infty }^{\infty }{{{f}_{2}}(\lambda )I(\lambda )d\lambda } \\ \int\limits_{-\infty }^{\infty }{{{f}_{3}}(\lambda )I(\lambda )d\lambda } \\ \end{matrix} \right]=M\left[ \begin{matrix} \int\limits_{-\infty }^{\infty }{{{r}_{0}}(\lambda )I(\lambda )d\lambda } \\ \int\limits_{-\infty }^{\infty }{{{g}_{0}}(\lambda )I(\lambda )d\lambda } \\ \int\limits_{-\infty }^{\infty }{{{b}_{0}}(\lambda )I(\lambda )d\lambda } \\ \end{matrix} \right]\Rightarrow \left[ \begin{matrix} {{F}_{1}} \\ {{F}_{2}} \\ {{F}_{3}} \\ \end{matrix} \right]=M\left[ \begin{matrix} r \\ g \\ b \\ \end{matrix} \right]\Rightarrow \left[ \begin{matrix} r \\ g \\ b \\ \end{matrix} \right]={{M}^{-1}}\left[ \begin{matrix} {{F}_{1}} \\ {{F}_{2}} \\ {{F}_{3}} \\ \end{matrix} \right] \\ \end{align} $
d)
$ \begin{align} \left[ \begin{matrix} r \\ g \\ b \\ \end{matrix} \right]={{M}^{-1}}\left[ \begin{matrix} {X} \\ {Y} \\ {Z} \\ \end{matrix} \right] \\ \end{align} $ where X, Y, Z are the xyz tristimulus values (always positive): $ X=\frac{x}{x+y+z},Y=\frac{y}{x+y+z},Z=\frac{z}{x+y+z} $
The three written formulas for tristimulus values are not correct, actually chromaticity ccordinates can be written as a function of tristimulus values (X, Y, Z) as follows: $ x=\frac{X}{X+Y+Z},y=\frac{Y}{X+Y+Z},z=\frac{Z}{X+Y+Z} $.
Also, the student should describe the CIE XYZ system.
Related Problem
In a color matching experiment, the three primaries R, G, B are used to match the color of a pure spectral component at wavelength $ \lambda $. (Assume that the color matching allows for color to be subtracted from the reference in the standard manner described in class.) At each wavelength $ \lambda $, the matching color is given by
where
Further define the white point
$ W=\left[ \begin{matrix} R, & G, & B \\ \end{matrix} \right]\left[ \begin{matrix} {{r}_{w}} \\ {{g}_{w}} \\ {{b}_{w}} \\ \end{matrix} \right] $.
Let $ I(\lambda) $ be the light reflected from a surface.
a) Calculate $ ({{r}_{e}}, {{g}_{e}}, {{b}_{e}}) $ the tristimulus values for the spectral distribution $ I(\lambda) $ using primaries R, G, B and an equal energy white point.
b) Calculate $ ({{r}_{c}}, {{g}_{c}}, {{b}_{c}}) $ the tristimulus values for the spectral distribution $ I(\lambda) $ using primaries R, G, B and white point $ ({{r}_{w}}, {{g}_{w}}, {{b}_{w}}) $.
c) Calculate $ ({{r}_{\gamma }}, {{g}_{\gamma }}, {{b}_{\gamma }}) $ the gamma corrected tristimulus values for the spectral distribution $ I(\lambda) $ using primaries R, G, B and white point $ ({{r}_{w}}, {{g}_{w}}, {{b}_{w}}) $, and $ \gamma =2.2 $.
(Refer to ECE 637 Spring 2004 Final Exam Problem 4.)