(New page: ==Problem 2 (2)== (A) We first change the form of y[n] that we are given by separating the exponentials and converting the complex exponential using Euler's method. <math> \begin{align...) |
m (Problem 2 (2) moved to Problem 2 (2) (ECE301Summer2008asan)) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | [[Category: ECE]] | |
+ | [[Category: ECE 301]] | ||
+ | [[Category: Summer]] | ||
+ | [[Category: 2008]] | ||
+ | [[Category: asan]] | ||
+ | [[Category: Exams]] | ||
(A) | (A) | ||
Latest revision as of 09:59, 21 November 2008
(A)
We first change the form of y[n] that we are given by separating the exponentials and converting the complex exponential using Euler's method.
$ \begin{align} y[n] &= e^{2 + j4.72135n} = e^{2}e^{j4.72135n}\\ &= e^{2}[cos(4.72135n) + jsin(4.72135n)]\\ \end{align} $
Next, we use the equation for energy in discrete time. Finding the magnitude of y[n], we see that cos^2 + sin^2 = 1 Therefore the energy for infinite interval is the infinite sum of $ e^{4} $ which = $ \infty $
$ \begin{align} \\ E\infty &= \Sigma_{n=-\infty}^{\infty}|y[n]|^2\\ &= \Sigma_{n=-\infty}^{\infty}\sqrt{(e^{2})^2[cos^2(4.72135n) + jsin^2(4.72135n)]}^2\\ &= \Sigma_{n=-\infty}^{\infty}\sqrt{e^4}^2 = \Sigma_{n=-\infty}^{\infty} e^{4} = \infty \end{align} $
(B)
We start with part B by noticing that the integral of the delta function is a step function. So the energy over an infinite interval is just the integral of the step function $ u(t + 2) - u(t - 2) $
$ \begin{align} y(t) &= \int_{-\infty}^{t} \delta(t + 2) - \delta(t - 2) dt = u(t + 2) - u(t - 2) \\ so \\ E\infty &= \int_{-\infty}^{\infty} |[u(t + 2) - u(t - 2)]|^2 dt\\ &= \int_{-2}^{2} |1|^2 dt \\ &= 2 - (-2) = 4 \end{align} $