(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
Compute the Energy and Power of the signal <math>x(t)=\dfrac{2t}{t^2+5}</math> between 3 and 5 seconds.
 
Compute the Energy and Power of the signal <math>x(t)=\dfrac{2t}{t^2+5}</math> between 3 and 5 seconds.
 
==Energy==
 
==Energy==
 +
 +
<math>E=\int_{t_1}^{t_2}x(t)dt</math>
  
 
<math>E=\int_3^{5}{\dfrac{2t}{t^2+5}dt}</math>
 
<math>E=\int_3^{5}{\dfrac{2t}{t^2+5}dt}</math>
Line 6: Line 8:
 
<math>U=t^2+5</math>             
 
<math>U=t^2+5</math>             
  
<math>dU=2t  dt</math>   
+
<math>dU=2tdt</math>   
 
            
 
            
 
Limits:
 
Limits:
 +
 
<math>U(3)=3^2+5=9+5=14</math>
 
<math>U(3)=3^2+5=9+5=14</math>
  
Line 20: Line 23:
  
 
<math>E=\ln {30/14}</math>
 
<math>E=\ln {30/14}</math>
 +
 +
==Power==
 +
 +
<math>P=\dfrac{1}{{t_2}-{t_1}}\int_{t_1}^{t_2}x(t)dt</math>
 +
 +
 +
<math>P=\dfrac{1}{5-3}\int_3^{5}{\dfrac{2t}{t^2+5}dt}</math>
 +
 +
<math>U=t^2+5</math>           
 +
 +
<math>dU=2tdt</math> 
 +
         
 +
Limits:
 +
 +
<math>U(3)=3^2+5=9+5=14</math>
 +
 +
<math>U(5)=5^2+5=25+5=30</math>
 +
 +
<math>P=\dfrac{1}{2}\int_{14}^{30}\dfrac{du}{U}</math>
 +
 +
<math>P=\dfrac{1}{2}\ln U |_{U=14}^{U=30}</math>
 +
 +
<math>P=\dfrac{1}{2}(\ln 30 - \ln 14)</math>
 +
 +
<math>P=\dfrac{1}{2}\ln{(\dfrac{15}{7})} </math>

Latest revision as of 13:42, 4 September 2008

Compute the Energy and Power of the signal $ x(t)=\dfrac{2t}{t^2+5} $ between 3 and 5 seconds.

Energy

$ E=\int_{t_1}^{t_2}x(t)dt $

$ E=\int_3^{5}{\dfrac{2t}{t^2+5}dt} $

$ U=t^2+5 $

$ dU=2tdt $

Limits:

$ U(3)=3^2+5=9+5=14 $

$ U(5)=5^2+5=25+5=30 $

$ E=\int_{14}^{30}\dfrac{du}{U} $

$ E=\ln U |_{U=14}^{U=30} $

$ E=\ln 30 - \ln 14 $

$ E=\ln {30/14} $

Power

$ P=\dfrac{1}{{t_2}-{t_1}}\int_{t_1}^{t_2}x(t)dt $


$ P=\dfrac{1}{5-3}\int_3^{5}{\dfrac{2t}{t^2+5}dt} $

$ U=t^2+5 $

$ dU=2tdt $

Limits:

$ U(3)=3^2+5=9+5=14 $

$ U(5)=5^2+5=25+5=30 $

$ P=\dfrac{1}{2}\int_{14}^{30}\dfrac{du}{U} $

$ P=\dfrac{1}{2}\ln U |_{U=14}^{U=30} $

$ P=\dfrac{1}{2}(\ln 30 - \ln 14) $

$ P=\dfrac{1}{2}\ln{(\dfrac{15}{7})} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood