(12 intermediate revisions by 2 users not shown) | |||
Line 21: | Line 21: | ||
</center> | </center> | ||
---- | ---- | ||
+ | ===Solution 1=== | ||
<math> | <math> | ||
E(S_n)=E(\frac{1}{n}\sum_i^n X_i) =\frac{1}{n}\sum_i^n E(X_i)=0 | E(S_n)=E(\frac{1}{n}\sum_i^n X_i) =\frac{1}{n}\sum_i^n E(X_i)=0 | ||
Line 42: | Line 43: | ||
</math> | </math> | ||
− | Thus <math>E(X_i-S_n]E(S_n)=E((X_i-S_n)S_n)</math>, <math>S_n</math> and <math>X_i-S_n</math> are uncorrelated. | + | Thus <math>E(X_i-S_n)E(S_n)=E((X_i-S_n)S_n)</math>, <math>S_n</math> and <math>X_i-S_n</math> are uncorrelated. |
+ | |||
+ | ===Solution 2=== | ||
+ | <math> S_n=\frac{1}{n}\sum_{j=1}{n}X_j </math>, note: in the problem statement, it should be <math>\frac{1}{n}, because <math>S_n</math> is the sample mean. | ||
+ | |||
+ | <math> | ||
+ | E[S_n]=E[\frac{1}{n}\sum_{j=1}{n}X_j] = \frac{1}{n}\sum_{j=1}{n}E[X_j ] = \frac{1}{n}\sum_{j=1}{n} \mu = 0\\ | ||
+ | E[(X_i-\mu)^2]=E[X_i^2]=\sigma^2 | ||
+ | </math> | ||
+ | |||
+ | <math> | ||
+ | E[X_iX_j]=\int_{-\infty}^{+\infty}x_ix_jf_{X_iX_j}(x_i,x_j)dx_idx_j=\int_{-\infty}^{+\infty}x_if_{X_i}(x_i)x_jf_{X_j}(x_j)dx_idx_j=E[X_i]E[X_j]=\mu\cdot\mu=0 | ||
+ | </math> | ||
+ | |||
+ | <math> | ||
+ | E[X_i-S_n]=E[X_i]-E[S_n]=0-0=0 | ||
+ | </math> | ||
+ | |||
+ | <math> | ||
+ | E[X_i\cdot S_n]=E[\frac{1}{n}\sum_{j=1}^{n}X_j\cdot X_i]=\frac{1}{n}\sum_{j=1}^{n}E[X_j\cdot X_i]=\frac{1}{n}\cdot \sigma^2 | ||
+ | </math> | ||
+ | |||
+ | <math> | ||
+ | E[S_n^2]=E[\frac{1}{n^2}\sum_{j=1}^{n}\sum_{i=1}^{n}X_j\cdot X_i]=\frac{1}{n^2}\sum_{j=1}^{n}E[X_i^2]+\frac{1}{n^2}\sum_{j=1}^{n}\sum_{i=1}^{n}E[X_i\cdot X_j]=\frac{1}{n^2}\cdot (n\cdot \sigma^2) + \frac{1}{n^2}\cdot 0 = \frac{\sigma^2}{n} | ||
+ | </math> | ||
+ | |||
+ | Therefore, | ||
+ | |||
+ | <math> | ||
+ | E[(S_n-0)(X_i-S_n-0)]=E[S_nX_i-S_n^2]= E[S_nX_i]-E[S_n^2]=\frac{\sigma^2}{n}-\frac{\sigma^2}{n}=0 | ||
+ | </math> | ||
+ | |||
+ | So | ||
+ | <math> | ||
+ | r = \frac{cov(S_n,X_i-S_n)}{\sigma_{S_n}\sigma_{X_i-S_n}}=0 | ||
+ | </math> | ||
+ | |||
+ | Thus <math>S_n</math> and <math>X_i-S_n</math> are uncorrelated. | ||
+ | |||
+ | ===Solution 3=== | ||
+ | |||
+ | Our goal is to show that <math>S_n</math> and <math>X_i</math> - <math>S_n</math> are uncorrelated <math>\forall i \in 1, 2, ..., n</math>. If we can show that the covariance between <math>S_n</math> and <math>X_i - S_n</math> is equal to 0 <math>\forall i</math>, then we will have shown the aforementioned property. Recalling that | ||
+ | |||
+ | <math> | ||
+ | cov(X,Y) = E[XY] - E[X]E[Y], | ||
+ | </math> | ||
+ | |||
+ | we aim to show that | ||
+ | |||
+ | <math> | ||
+ | E[(S_n)(X_i -S_n)] - E[S_n]E[X_i-S_n] = 0. | ||
+ | </math> | ||
+ | |||
+ | Let us consider the LHS of the above equation. This can be written as | ||
+ | |||
+ | <math> | ||
+ | E[(S_n)(X_i -S_n)] - (E[S_n]E[X_i]-E[S_n]E[S_n]). | ||
+ | </math> | ||
+ | |||
+ | We are given that <math>E[X_i] = 0 \forall i</math>, and since <math>S_n \triangleq \frac{1}{n}\sum^n_{j=1}X_j</math> it is easy to show that <math>E[S_n] = 0</math> as well. Thus the above becomes | ||
+ | |||
+ | <math> | ||
+ | E[(S_n)(X_i -S_n)] | ||
+ | </math> | ||
+ | |||
+ | or | ||
+ | |||
+ | <math> | ||
+ | E[S_n X_i] - E[S_n^2]. | ||
+ | </math> | ||
+ | |||
+ | Recalling that the above expression must be equal to 0, our problem has reduced to showing that | ||
+ | |||
+ | <math> | ||
+ | E[S_n X_i] = E[S_n^2]. | ||
+ | </math> | ||
+ | |||
+ | Let us first examine <math>E[S_n X_i]</math>. This can be rewritten as | ||
+ | |||
+ | <math> | ||
+ | E[S_n X_i] = E\left[\left(\frac{1}{n}\sum^n_{j = 1}X_j \right)\cdot X_i\right] = \frac{1}{n}E[X_1 X_i + X_2 Xi + ... + X_i X_i + ... + X_n X_i]. | ||
+ | </math> | ||
+ | |||
+ | Since the sequence <math>X_1, X_2, ..., X_n</math> is i.i.d, if <math>i\neq j, E[X_i X_j] = 0</math>. Thus, the above becomes | ||
+ | |||
+ | <math> | ||
+ | \frac{1}{n}\left(0 + 0 + ...\, E[X_i^2] + ... + 0 + 0\right). | ||
+ | </math> | ||
+ | |||
+ | Since <math>X_i</math> is zero-mean <math>\forall i</math>, we know that <math>E[X_i^2] = var(X_i) = \sigma^2</math> for any <math>i</math>, and that <math>E[S_n X_i] = \frac{\sigma^2}{n}</math>. Now let us examine <math>E[S_n^2]</math>. This can be rewritten as | ||
+ | |||
+ | <math> | ||
+ | E[S_n^2] = E\left[\frac{1}{n}\left(X_1 + X_2 + ... + X_n\right)\frac{1}{n}\left(X_1 + X_2 + ... + X_n\right)\right] = \frac{1}{n^2}E\left[\left(X_1 + X_2 + ... + X_n\right)^2\right] | ||
+ | </math>. | ||
+ | |||
+ | Squaring out the expression inside the expectation operator will result in an expression with <math>n</math> square terms and <math>\sum^n_{j-1}(j-1)</math> cross terms. Recall that the expectation values of the cross terms will all be zero since <math>X_i</math> is zero-mean <math>\forall i</math>. Then we have | ||
+ | |||
+ | <math> | ||
+ | \frac{1}{n^2}E\left[\left(X_1 + X_2 + ... + X_n\right)^2\right] = \frac{1}{n^2}\left(E[X_1^2] + E[X_2^2] + ... + E[X_n^2]\right) = \frac{1}{n}(n\sigma^2) = \frac{\sigma^2}{n}. | ||
+ | </math> | ||
+ | |||
+ | Thus we have shown that <math>E[S_n X_i] = E[S_n^2] = \frac{\sigma^2}{n}</math>, and we are done. | ||
+ | |||
+ | ===Similar Problem=== | ||
+ | |||
+ | Consider a similar problem, except in the case that <math>\mu\neq 0 \,\forall \,X_i, i=1,...,n</math>. Are the sample mean <math>S_n=\sum_{j=1}^{n}X_j</math> and <math>X_i</math> uncorrelated for every <math>i=1,...,n</math>? | ||
---- | ---- | ||
[[ECE-QE_CS1-2015|Back to QE CS question 1, August 2015]] | [[ECE-QE_CS1-2015|Back to QE CS question 1, August 2015]] | ||
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]] | [[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]] |
Latest revision as of 22:38, 31 January 2016
Communication, Networking, Signal and Image Processing (CS)
Question 1: Probability and Random Processes
August 2015
Solution 1
$ E(S_n)=E(\frac{1}{n}\sum_i^n X_i) =\frac{1}{n}\sum_i^n E(X_i)=0 $
$ E(X_i-S_n)=E(X_i-\frac{1}{n}\sum_k^n X_k) =E(X_i)-E(\frac{1}{n}\sum_k^n X_k)=0 $
$ E((X_i-S_n)S_n)=E(X_iS_n-S_n^2) $
As for any $ i,j\in \{1,2,...,n\} $, we have $ E(X_i\cdot X_j) = E(X_i)E(X_j)=0 $
$ E(X_iS_n-S_n^2) = E(X_iS_n)-E(S_n^2)\\ =E(\sum_k^nX_iX_K) - E(\sum_i^n\sum_k^nX_iX_K)\\ =\sum_k^nE(X_iX_K) - \sum_i^n\sum_k^nE(X_iX_K) \\ =0 $
Thus $ E(X_i-S_n)E(S_n)=E((X_i-S_n)S_n) $, $ S_n $ and $ X_i-S_n $ are uncorrelated.
Solution 2
$ S_n=\frac{1}{n}\sum_{j=1}{n}X_j $, note: in the problem statement, it should be $ \frac{1}{n}, because <math>S_n $ is the sample mean.
$ E[S_n]=E[\frac{1}{n}\sum_{j=1}{n}X_j] = \frac{1}{n}\sum_{j=1}{n}E[X_j ] = \frac{1}{n}\sum_{j=1}{n} \mu = 0\\ E[(X_i-\mu)^2]=E[X_i^2]=\sigma^2 $
$ E[X_iX_j]=\int_{-\infty}^{+\infty}x_ix_jf_{X_iX_j}(x_i,x_j)dx_idx_j=\int_{-\infty}^{+\infty}x_if_{X_i}(x_i)x_jf_{X_j}(x_j)dx_idx_j=E[X_i]E[X_j]=\mu\cdot\mu=0 $
$ E[X_i-S_n]=E[X_i]-E[S_n]=0-0=0 $
$ E[X_i\cdot S_n]=E[\frac{1}{n}\sum_{j=1}^{n}X_j\cdot X_i]=\frac{1}{n}\sum_{j=1}^{n}E[X_j\cdot X_i]=\frac{1}{n}\cdot \sigma^2 $
$ E[S_n^2]=E[\frac{1}{n^2}\sum_{j=1}^{n}\sum_{i=1}^{n}X_j\cdot X_i]=\frac{1}{n^2}\sum_{j=1}^{n}E[X_i^2]+\frac{1}{n^2}\sum_{j=1}^{n}\sum_{i=1}^{n}E[X_i\cdot X_j]=\frac{1}{n^2}\cdot (n\cdot \sigma^2) + \frac{1}{n^2}\cdot 0 = \frac{\sigma^2}{n} $
Therefore,
$ E[(S_n-0)(X_i-S_n-0)]=E[S_nX_i-S_n^2]= E[S_nX_i]-E[S_n^2]=\frac{\sigma^2}{n}-\frac{\sigma^2}{n}=0 $
So $ r = \frac{cov(S_n,X_i-S_n)}{\sigma_{S_n}\sigma_{X_i-S_n}}=0 $
Thus $ S_n $ and $ X_i-S_n $ are uncorrelated.
Solution 3
Our goal is to show that $ S_n $ and $ X_i $ - $ S_n $ are uncorrelated $ \forall i \in 1, 2, ..., n $. If we can show that the covariance between $ S_n $ and $ X_i - S_n $ is equal to 0 $ \forall i $, then we will have shown the aforementioned property. Recalling that
$ cov(X,Y) = E[XY] - E[X]E[Y], $
we aim to show that
$ E[(S_n)(X_i -S_n)] - E[S_n]E[X_i-S_n] = 0. $
Let us consider the LHS of the above equation. This can be written as
$ E[(S_n)(X_i -S_n)] - (E[S_n]E[X_i]-E[S_n]E[S_n]). $
We are given that $ E[X_i] = 0 \forall i $, and since $ S_n \triangleq \frac{1}{n}\sum^n_{j=1}X_j $ it is easy to show that $ E[S_n] = 0 $ as well. Thus the above becomes
$ E[(S_n)(X_i -S_n)] $
or
$ E[S_n X_i] - E[S_n^2]. $
Recalling that the above expression must be equal to 0, our problem has reduced to showing that
$ E[S_n X_i] = E[S_n^2]. $
Let us first examine $ E[S_n X_i] $. This can be rewritten as
$ E[S_n X_i] = E\left[\left(\frac{1}{n}\sum^n_{j = 1}X_j \right)\cdot X_i\right] = \frac{1}{n}E[X_1 X_i + X_2 Xi + ... + X_i X_i + ... + X_n X_i]. $
Since the sequence $ X_1, X_2, ..., X_n $ is i.i.d, if $ i\neq j, E[X_i X_j] = 0 $. Thus, the above becomes
$ \frac{1}{n}\left(0 + 0 + ...\, E[X_i^2] + ... + 0 + 0\right). $
Since $ X_i $ is zero-mean $ \forall i $, we know that $ E[X_i^2] = var(X_i) = \sigma^2 $ for any $ i $, and that $ E[S_n X_i] = \frac{\sigma^2}{n} $. Now let us examine $ E[S_n^2] $. This can be rewritten as
$ E[S_n^2] = E\left[\frac{1}{n}\left(X_1 + X_2 + ... + X_n\right)\frac{1}{n}\left(X_1 + X_2 + ... + X_n\right)\right] = \frac{1}{n^2}E\left[\left(X_1 + X_2 + ... + X_n\right)^2\right] $.
Squaring out the expression inside the expectation operator will result in an expression with $ n $ square terms and $ \sum^n_{j-1}(j-1) $ cross terms. Recall that the expectation values of the cross terms will all be zero since $ X_i $ is zero-mean $ \forall i $. Then we have
$ \frac{1}{n^2}E\left[\left(X_1 + X_2 + ... + X_n\right)^2\right] = \frac{1}{n^2}\left(E[X_1^2] + E[X_2^2] + ... + E[X_n^2]\right) = \frac{1}{n}(n\sigma^2) = \frac{\sigma^2}{n}. $
Thus we have shown that $ E[S_n X_i] = E[S_n^2] = \frac{\sigma^2}{n} $, and we are done.
Similar Problem
Consider a similar problem, except in the case that $ \mu\neq 0 \,\forall \,X_i, i=1,...,n $. Are the sample mean $ S_n=\sum_{j=1}^{n}X_j $ and $ X_i $ uncorrelated for every $ i=1,...,n $?