(18 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
[[Category:ECE]]
 
[[Category:ECE]]
 
[[Category:QE]]
 
[[Category:QE]]
[[Category:CNSIP]]
+
[[Category:CE]]
 
[[Category:problem solving]]
 
[[Category:problem solving]]
[[Category:random variables]]
+
[[Category:algorithms]]
[[Category:probability]]
+
  
  
Line 13: Line 12:
  
 
<font size= 4>
 
<font size= 4>
Communication, Networking, Signal and Image Processing (CS)
+
Computer Engineering(CE)
  
Question 1: Probability and Random Processes
+
Question 1: Algorithms
 
</font size>
 
</font size>
  
Line 21: Line 20:
 
</center>
 
</center>
 
----
 
----
===Solution===
+
===Solution 3===
Let <math>\lambda = \frac{1}{\mu}</math>, then <math>E(X)=E(Y)=\frac{1}{\lambda}</math>.
+
For this problem, it is very useful to note that for any independent random variables <math>X</math> and <math>Y</math> and their characteristic functions <math>\phi_X(\omega),\,\phi_Y(\omega)</math> we have the following property:
  
 
<math>
 
<math>
\phi_{X+Y}=E[e^{it(X+Y)}]=\int_{X}\int_{Y}e^{it(X+Y)}p(x,y)dxdy
+
\phi_{X+Y}(\omega) = \phi_X(\omega)\phi_Y(\omega)
 
</math>
 
</math>
  
As X and Y are independent
+
We then note that the characteristic function of an exponential random variable <math>Z</math> is written as
  
 
<math>
 
<math>
\phi_{X+Y}=\int_{X}\int_{Y}e^{it(x+y)}p(x)p(y)dxdy = \int_{X}e^{itx}p(x)dx\int_{Y}e^{ity}p(y)dy=\phi_{X}\phi_{Y}
+
\phi_Z (\omega) = \frac{\lambda}{\lambda - i\omega}
 
</math>
 
</math>
 +
 +
where <math>\lambda</math> parameterizes the exponential distribution. As such, we can write the characteristic function of <math>X+Y</math> as
  
 
<math>
 
<math>
\phi_{X}=E[e^{itX}]=\int_{-\infty}^{\infty}e^{itx}\lambda e^{-\lambda x} dx \\
+
\phi_{X+Y}(\omega) = \phi_X(\omega)\phi_Y(\omega) \\
= \lambda \int_{-\infty}^{\infty}e^{-(\lambda -iu)x} dx = -\frac{\lambda}{\lambda-iu}e^{-(\lambda-iu)x}\|_0^\infty\\
+
= \left(\frac{\lambda}{\lambda-i\omega}\right)^2
=frac{\lambda}{\lambda-iu}
+
 
</math>
 
</math>
----
+
 
[[ECE-QE_CS1-2015|Back to QE CS question 1, August 2015]]
+
Next, we recall that the mean of an exponential random variable is equal to the inverse of its parameter, i.e. <math>\frac{1}{\lambda}</math>. Then the above expression becomes
 +
 
 +
<math>
 +
\phi_{X+Y}(\omega) = \left(\frac{\frac{1}{\mu}}{\frac{1}{\mu}-i\omega}\right)^2
 +
</math>
 +
 
 +
Multiplying by <math>\frac{\mu^2}{\mu^2}</math> gives
 +
 
 +
<math>
 +
\phi_{X+Y}(\omega) = \left(\frac{1}{1-i\omega\mu}\right)^2
 +
</math>
 +
 
 +
 
 +
[[ECE-QE_CE1-2015|Back to QE CE question 1, August 2015]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 21:00, 7 March 2016


ECE Ph.D. Qualifying Exam

Computer Engineering(CE)

Question 1: Algorithms

August 2015


Solution 3

For this problem, it is very useful to note that for any independent random variables $ X $ and $ Y $ and their characteristic functions $ \phi_X(\omega),\,\phi_Y(\omega) $ we have the following property:

$ \phi_{X+Y}(\omega) = \phi_X(\omega)\phi_Y(\omega) $

We then note that the characteristic function of an exponential random variable $ Z $ is written as

$ \phi_Z (\omega) = \frac{\lambda}{\lambda - i\omega} $

where $ \lambda $ parameterizes the exponential distribution. As such, we can write the characteristic function of $ X+Y $ as

$ \phi_{X+Y}(\omega) = \phi_X(\omega)\phi_Y(\omega) \\ = \left(\frac{\lambda}{\lambda-i\omega}\right)^2 $

Next, we recall that the mean of an exponential random variable is equal to the inverse of its parameter, i.e. $ \frac{1}{\lambda} $. Then the above expression becomes

$ \phi_{X+Y}(\omega) = \left(\frac{\frac{1}{\mu}}{\frac{1}{\mu}-i\omega}\right)^2 $

Multiplying by $ \frac{\mu^2}{\mu^2} $ gives

$ \phi_{X+Y}(\omega) = \left(\frac{1}{1-i\omega\mu}\right)^2 $


Back to QE CE question 1, August 2015

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood