(20 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
[[Category:ECE]]
 
[[Category:ECE]]
 
[[Category:QE]]
 
[[Category:QE]]
[[Category:CNSIP]]
+
[[Category:CE]]
 
[[Category:problem solving]]
 
[[Category:problem solving]]
[[Category:random variables]]
+
[[Category:algorithms]]
[[Category:probability]]
+
  
  
Line 13: Line 12:
  
 
<font size= 4>
 
<font size= 4>
Communication, Networking, Signal and Image Processing (CS)
+
Computer Engineering(CE)
  
Question 1: Probability and Random Processes
+
Question 1: Algorithms
 
</font size>
 
</font size>
  
Line 21: Line 20:
 
</center>
 
</center>
 
----
 
----
===Solution===
+
===Solution 3===
Let <math>\lambda = \frac{1}{\mu}</math>, then <math>E(X)=E(Y)=\frac{1}{\lambda}</math>.
+
For this problem, it is very useful to note that for any independent random variables <math>X</math> and <math>Y</math> and their characteristic functions <math>\phi_X(\omega),\,\phi_Y(\omega)</math> we have the following property:
  
 
<math>
 
<math>
\phi_{X+Y}=E[e^{it(X+Y)}]=\int_{X}\int_{Y}e^{it(X+Y)}p(x,y)dxdy
+
\phi_{X+Y}(\omega) = \phi_X(\omega)\phi_Y(\omega)
 
</math>
 
</math>
  
As X and Y are independent
+
We then note that the characteristic function of an exponential random variable <math>Z</math> is written as
  
 
<math>
 
<math>
\phi_{X+Y}=\int_{X}\int_{Y}e^{it(x+y)}p(x)p(y)dxdy = \int_{X}e^{itx}p(x)dx\int_{Y}e^{ity}p(y)dy=\phi_{X}\phi_{Y}
+
\phi_Z (\omega) = \frac{\lambda}{\lambda - i\omega}
 
</math>
 
</math>
 +
 +
where <math>\lambda</math> parameterizes the exponential distribution. As such, we can write the characteristic function of <math>X+Y</math> as
  
 
<math>
 
<math>
\phi_{X}=E[e^{itX}]=\int_{-\infty}^{\infty}e^{itx}\lambda e^{-\lambda x) dx
+
\phi_{X+Y}(\omega) = \phi_X(\omega)\phi_Y(\omega) \\
 +
= \left(\frac{\lambda}{\lambda-i\omega}\right)^2
 
</math>
 
</math>
----
+
 
[[ECE-QE_CS1-2015|Back to QE CS question 1, August 2015]]
+
Next, we recall that the mean of an exponential random variable is equal to the inverse of its parameter, i.e. <math>\frac{1}{\lambda}</math>. Then the above expression becomes
 +
 
 +
<math>
 +
\phi_{X+Y}(\omega) = \left(\frac{\frac{1}{\mu}}{\frac{1}{\mu}-i\omega}\right)^2
 +
</math>
 +
 
 +
Multiplying by <math>\frac{\mu^2}{\mu^2}</math> gives
 +
 
 +
<math>
 +
\phi_{X+Y}(\omega) = \left(\frac{1}{1-i\omega\mu}\right)^2
 +
</math>
 +
 
 +
 
 +
[[ECE-QE_CE1-2015|Back to QE CE question 1, August 2015]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 21:00, 7 March 2016


ECE Ph.D. Qualifying Exam

Computer Engineering(CE)

Question 1: Algorithms

August 2015


Solution 3

For this problem, it is very useful to note that for any independent random variables $ X $ and $ Y $ and their characteristic functions $ \phi_X(\omega),\,\phi_Y(\omega) $ we have the following property:

$ \phi_{X+Y}(\omega) = \phi_X(\omega)\phi_Y(\omega) $

We then note that the characteristic function of an exponential random variable $ Z $ is written as

$ \phi_Z (\omega) = \frac{\lambda}{\lambda - i\omega} $

where $ \lambda $ parameterizes the exponential distribution. As such, we can write the characteristic function of $ X+Y $ as

$ \phi_{X+Y}(\omega) = \phi_X(\omega)\phi_Y(\omega) \\ = \left(\frac{\lambda}{\lambda-i\omega}\right)^2 $

Next, we recall that the mean of an exponential random variable is equal to the inverse of its parameter, i.e. $ \frac{1}{\lambda} $. Then the above expression becomes

$ \phi_{X+Y}(\omega) = \left(\frac{\frac{1}{\mu}}{\frac{1}{\mu}-i\omega}\right)^2 $

Multiplying by $ \frac{\mu^2}{\mu^2} $ gives

$ \phi_{X+Y}(\omega) = \left(\frac{1}{1-i\omega\mu}\right)^2 $


Back to QE CE question 1, August 2015

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett