(One intermediate revision by the same user not shown)
Line 41: Line 41:
 
'''Part 3.'''
 
'''Part 3.'''
  
Let <math>X</math> be independent identically distributed exponential random variables with mean <math>\mu</math>. Find the characteristic function of <math>X+Y</math>.  
+
Let <math>X</math> and  <math>Y</math> be independent identically distributed exponential random variables with mean <math>\mu</math>. Find the characteristic function of <math>X+Y</math>.  
  
 
:'''Click [[ECE_PhD_QE_CNSIP_2015_Problem1.3|here]] to view student [[ECE_PhD_QE_CNSIP_2015_Problem1.3|answers and discussions]]'''
 
:'''Click [[ECE_PhD_QE_CNSIP_2015_Problem1.3|here]] to view student [[ECE_PhD_QE_CNSIP_2015_Problem1.3|answers and discussions]]'''
Line 47: Line 47:
 
'''Part 4.'''
 
'''Part 4.'''
  
Consider a sequence of independent and identically distributed random variables <math>X_1,X_2,... X_n</math>, where each <math>X_i</math> has mean <math>/mu = 0</math> and variance <math> \sigma^2</math>. Show that for every <math>i=1,...,n</math> the random variables <math>S_n</math> and <math>X_i-S_n</math>, where <math>S_n=\sum_{j=1}^{n}X_j</math> is the sample mean, are uncorrelated.
+
Consider a sequence of independent and identically distributed random variables <math>X_1,X_2,... X_n</math>, where each <math>X_i</math> has mean <math>\mu = 0</math> and variance <math> \sigma^2</math>. Show that for every <math>i=1,...,n</math> the random variables <math>S_n</math> and <math>X_i-S_n</math>, where <math>S_n=\sum_{j=1}^{n}X_j</math> is the sample mean, are uncorrelated.
  
 
:'''Click [[ECE_PhD_QE_CNSIP_2015_Problem1.4|here]] to view student [[ECE_PhD_QE_CNSIP_2015_Problem1.4|answers and discussions]]'''
 
:'''Click [[ECE_PhD_QE_CNSIP_2015_Problem1.4|here]] to view student [[ECE_PhD_QE_CNSIP_2015_Problem1.4|answers and discussions]]'''
 
----
 
----
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 23:17, 3 December 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2015



Question

Part 1.

If $ X $ and $ Y $ are independent Poisson random variables with respective parameters $ \lambda_1 $ and $ \lambda_2 $, calculate the conditional probability mass function of $ X $ given that $ X+Y=n $.

Click here to view student answers and discussions

Part 2.

Let $ Z(t), t\ge 0 $, be a random process obtained by switching between the values 0 and 1 according to the event times in a counting process $ N(t) $. Let $ P(Z(0)=0)=p $ and

$ P(N(t)=k) = \frac{1}{1+\lambda t}(\frac{\lambda t}{1+\lambda t})^k $

for $ k = 0, 1, ... $. Find the pmf of $ Z(t) $.

Click here to view student answers and discussions

Part 3.

Let $ X $ and $ Y $ be independent identically distributed exponential random variables with mean $ \mu $. Find the characteristic function of $ X+Y $.

Click here to view student answers and discussions

Part 4.

Consider a sequence of independent and identically distributed random variables $ X_1,X_2,... X_n $, where each $ X_i $ has mean $ \mu = 0 $ and variance $ \sigma^2 $. Show that for every $ i=1,...,n $ the random variables $ S_n $ and $ X_i-S_n $, where $ S_n=\sum_{j=1}^{n}X_j $ is the sample mean, are uncorrelated.

Click here to view student answers and discussions

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett