(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Category:2015 Spring ECE 201 Peleato]][[Category:2015 Spring ECE 201 Peleato]][[Category:2015 Spring ECE 201 Peleato]][[Category:2015 Spring ECE 201 Peleato]][[Category:2015 Spring ECE 201 Peleato]]
+
[[Category:ECE201]]  
 +
[[Category:ECE]]  
 +
[[Category:ECE201Spring2015Peleato]]
 +
[[Category:circuits]]
 +
[[Category:linear circuits]]
 +
[[Category:problem solving]]
  
=Chinar_Dhamija_Superposition_Problem_ECE201S15=
+
=Superposition Practice=
 +
<center><font size= 4>
 +
'''Practice question for [[ECE201]]: "Linear circuit analysis I" '''
 +
</font size>
  
 +
By: Chinar Dhamija
  
 +
Topic: Superposition
  
Put your content here . . .
+
</center><br />
  
 +
----
 +
==Question==
 +
Determine the value of <math> I_x </math> using superposition.
  
 +
[[File:ECE201 P2.jpg|300px|center]]
  
 +
----
 +
----
 +
===Answer ===
 +
The circuit has two sources, a voltage and a current source. In order to find <math> I_x </math> we need to look at two instances.<br />
 +
1. Deactivate the voltage source (V = 0)<br />
 +
2. Deactivate the current source (I = 0)<br />
  
[[ 2015 Spring ECE 201 Peleato|Back to 2015 Spring ECE 201 Peleato]]
+
Let's find <math> I_x </math> first by deactivating the voltage source as seen in the picture below.
 +
[[File:ECE201_P3_2.jpg|200px|center]]
 +
We can find <math> I_x </math> by using loop analysis. The left loop can be <math> I_1 </math> and the right loop can be <math> I_2 </math>.<br />
 +
When doing loop analysis we can come up with the following equation:<br />
 +
<math>\begin{align}
 +
I_1:
 +
    10*I_1 + 20(I_1 - I_2) = 0\\
 +
      30*I_1 = 20*I_2\\
 +
I_2:
 +
    I_2 = 3A\\
 +
\end{align}
 +
</math><br />
 +
 
 +
After finding <math> I_1 </math> and <math> I_2 </math> we can find <math> I_x </math>.<br />
 +
<math>\begin{align}
 +
I_x = I_1 - I_2\\
 +
I_x = 2 - 3\\
 +
I_x = -1\\
 +
\end{align}
 +
</math>
 +
 
 +
That is what we get for <math> I_x </math> if the voltage source is deactivated.<br />
 +
 
 +
Now we need to do the same procedure but this time we will deactivate the current source; therefore, we will get the following circuit:<br />
 +
[[File:ECE201_P3_3.jpg|200px|center]]
 +
 
 +
We can use source transformation to turn the voltage source into the current then use current division to solve for <math> I_x </math>.<br />
 +
After doing source transformation we get the following circuit:<br />
 +
[[File:ECE201_P3_4.jpg|200px|center]]
 +
 
 +
Now use current division to find <math> I_x </math>.<br />
 +
<math>\begin{align}
 +
I_x = \frac{1/10}{1/10 + 1/20} * 3\\
 +
 
 +
I_x = 2\\
 +
\end{align}
 +
</math>
 +
 
 +
Finally, the last step would be to add up the two  <math> I_x </math> values we obtained by deactivating the voltage and current sources.
 +
<math> I_x = -1 + 2</math><br />
 +
<math> I_x = 1A</math><br />
 +
 
 +
 
 +
----
 +
==Questions and comments==
 +
If you have any questions, comments, etc. please post them below
 +
*Comment 1
 +
**Answer to Comment 1
 +
*Comment 2
 +
**Answer to Comment 2
 +
----
 +
[[2015 Spring ECE 201 Peleato|Back to 2015 Spring ECE 201 Peleato]]
 +
 
 +
[[ECE201|Back to ECE201]]

Latest revision as of 15:31, 2 May 2015


Superposition Practice

Practice question for ECE201: "Linear circuit analysis I"

By: Chinar Dhamija

Topic: Superposition



Question

Determine the value of $ I_x $ using superposition.

ECE201 P2.jpg


Answer

The circuit has two sources, a voltage and a current source. In order to find $ I_x $ we need to look at two instances.
1. Deactivate the voltage source (V = 0)
2. Deactivate the current source (I = 0)

Let's find $ I_x $ first by deactivating the voltage source as seen in the picture below.

ECE201 P3 2.jpg

We can find $ I_x $ by using loop analysis. The left loop can be $ I_1 $ and the right loop can be $ I_2 $.
When doing loop analysis we can come up with the following equation:
$ \begin{align} I_1: 10*I_1 + 20(I_1 - I_2) = 0\\ 30*I_1 = 20*I_2\\ I_2: I_2 = 3A\\ \end{align} $

After finding $ I_1 $ and $ I_2 $ we can find $ I_x $.
$ \begin{align} I_x = I_1 - I_2\\ I_x = 2 - 3\\ I_x = -1\\ \end{align} $

That is what we get for $ I_x $ if the voltage source is deactivated.

Now we need to do the same procedure but this time we will deactivate the current source; therefore, we will get the following circuit:

ECE201 P3 3.jpg

We can use source transformation to turn the voltage source into the current then use current division to solve for $ I_x $.
After doing source transformation we get the following circuit:

ECE201 P3 4.jpg

Now use current division to find $ I_x $.
$ \begin{align} I_x = \frac{1/10}{1/10 + 1/20} * 3\\ I_x = 2\\ \end{align} $

Finally, the last step would be to add up the two $ I_x $ values we obtained by deactivating the voltage and current sources.

$  I_x = -1 + 2 $
$ I_x = 1A $



Questions and comments

If you have any questions, comments, etc. please post them below

  • Comment 1
    • Answer to Comment 1
  • Comment 2
    • Answer to Comment 2

Back to 2015 Spring ECE 201 Peleato

Back to ECE201

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn