(Created page with "'''3. (30 Points)''' Let <math class="inline">\mathbf{X}_{1},\cdots,\mathbf{X}_{n},\cdots</math> be a sequence of random variables that are not necessarily statistically ind...")
 
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
[[Category:random variables]]
 +
[[Category:probability]]
 +
 +
<center>
 +
<font size= 4>
 +
[[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]
 +
</font size>
 +
 +
<font size= 4>
 +
Communication, Networking, Signal and Image Processing (CS)
 +
 +
Question 1: Probability and Random Processes
 +
</font size>
 +
 +
August 2001
 +
</center>
 +
----
 +
----
 +
 
'''3. (30 Points)'''
 
'''3. (30 Points)'''
  
Line 7: Line 26:
 
Given that <math class="inline">\mathbf{X}_{1},\cdots,\mathbf{X}_{n},\cdots</math>  are uncorrelated, determine whether or not <math class="inline">\left\{ \mathbf{Y}_{n}\right\}</math>  converges to <math class="inline">\mu</math>  in the mean square sense.
 
Given that <math class="inline">\mathbf{X}_{1},\cdots,\mathbf{X}_{n},\cdots</math>  are uncorrelated, determine whether or not <math class="inline">\left\{ \mathbf{Y}_{n}\right\}</math>  converges to <math class="inline">\mu</math>  in the mean square sense.
  
<math class="inline">E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=E\left[\mathbf{Y}_{n}^{2}\right]-2E\left[\mathbf{Y}_{n}\right]\mu+\mu^{2}.</math>  
+
(b)
 +
 
 +
Given that the covariance between <math class="inline">\mathbf{X}_{j}</math>  and <math class="inline">\mathbf{X}_{k}</math>  is given by
 +
<br>
 +
<math class="inline">cov\left(\mathbf{X}_{j},\mathbf{X}_{k}\right)=\begin{cases}
 +
\begin{array}{lll}
 +
\sigma^{2}    \text{, for }j=k\\
 +
r\sigma^{2}    \text{, for }\left|j-k\right|=1\\
 +
0    \text{, elsewhere, }
 +
\end{array}\end{cases}</math>
 +
<br>
 +
where <math class="inline">-1\leq r\leq1</math> , determine whether or not <math class="inline">\left\{ \mathbf{Y}_{n}\right\}</math>  converges to <math class="inline">\mu</math>  in the mean square sense.
 +
----
 +
==Share and discuss your solutions below.==
 +
----
 +
==Solution 1==
 +
(a)
 +
<math class="inline">E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=E\left[\mathbf{Y}_{n}^{2}\right]-2E\left[\mathbf{Y}_{n}\right]\mu+\mu^{2}.</math>  
  
 
<math class="inline">E\left[\mathbf{Y}_{n}\right]=\frac{1}{n}\sum_{k=1}^{n}E\left[\mathbf{X}_{k}\right]=\mu.</math>  
 
<math class="inline">E\left[\mathbf{Y}_{n}\right]=\frac{1}{n}\sum_{k=1}^{n}E\left[\mathbf{X}_{k}\right]=\mu.</math>  
Line 14: Line 50:
  
 
<math class="inline">E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=E\left[\mathbf{Y}_{n}^{2}\right]-2E\left[\mathbf{Y}_{n}\right]\mu+\mu^{2}=\frac{\sigma^{2}}{n}+\mu^{2}-2\mu\cdot\mu+\mu^{2}=\frac{\sigma^{2}}{n}.</math>
 
<math class="inline">E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=E\left[\mathbf{Y}_{n}^{2}\right]-2E\left[\mathbf{Y}_{n}\right]\mu+\mu^{2}=\frac{\sigma^{2}}{n}+\mu^{2}-2\mu\cdot\mu+\mu^{2}=\frac{\sigma^{2}}{n}.</math>
<math class="inline">\lim_{n\rightarrow\infty}E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=\lim_{n\rightarrow\infty}\left(\frac{\sigma^{2}}{n}\right)=0.</math>
 
 
Another approach
 
 
<math class="inline">E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=E\left[\left|\frac{1}{n}\sum_{k=1}^{n}\left(\mathbf{X}_{k}-\mu\right)\right|^{2}\right]=\frac{1}{n^{2}}\sum_{k=1}^{n}\sum_{l=1}^{n}E\left[\left(\mathbf{X}_{k}-\mu\right)\left(\mathbf{X}_{l}-\mu\right)\right]</math><math class="inline">=\frac{1}{n^{2}}\sum_{k=1}^{n}E\left[\left(\mathbf{X}_{k}-\mu\right)^{2}\right]+\frac{1}{n^{2}}\underset{k\neq l}{\sum_{k=1}^{n}\sum_{l=1}^{n}}E\left[\mathbf{X}_{k}-\mu\right]E\left[\mathbf{X}_{l}-\mu\right]</math><math class="inline">=\frac{1}{n^{2}}\cdot n\cdot\sigma^{2}+\frac{1}{n^{2}}\cdot n\left(n-1\right)\cdot0^{2}=\frac{\sigma^{2}}{n}.</math>
 
 
 
<math class="inline">\lim_{n\rightarrow\infty}E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=\lim_{n\rightarrow\infty}\left(\frac{\sigma^{2}}{n}\right)=0.</math>  
 
<math class="inline">\lim_{n\rightarrow\infty}E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=\lim_{n\rightarrow\infty}\left(\frac{\sigma^{2}}{n}\right)=0.</math>  
  
Line 40: Line 70:
  
 
Thus, <math class="inline">\mathbf{Y}_{n}</math>  converges in the mean square sense to <math class="inline">\mu</math> .
 
Thus, <math class="inline">\mathbf{Y}_{n}</math>  converges in the mean square sense to <math class="inline">\mu</math> .
 +
----
 +
==Solution 2==
 +
(a)
 +
 +
<math class="inline">E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=E\left[\left|\frac{1}{n}\sum_{k=1}^{n}\left(\mathbf{X}_{k}-\mu\right)\right|^{2}\right]=\frac{1}{n^{2}}\sum_{k=1}^{n}\sum_{l=1}^{n}E\left[\left(\mathbf{X}_{k}-\mu\right)\left(\mathbf{X}_{l}-\mu\right)\right]</math><math class="inline">=\frac{1}{n^{2}}\sum_{k=1}^{n}E\left[\left(\mathbf{X}_{k}-\mu\right)^{2}\right]+\frac{1}{n^{2}}\underset{k\neq l}{\sum_{k=1}^{n}\sum_{l=1}^{n}}E\left[\mathbf{X}_{k}-\mu\right]E\left[\mathbf{X}_{l}-\mu\right]</math><math class="inline">=\frac{1}{n^{2}}\cdot n\cdot\sigma^{2}+\frac{1}{n^{2}}\cdot n\left(n-1\right)\cdot0^{2}=\frac{\sigma^{2}}{n}.</math>
 +
 +
<math class="inline">\lim_{n\rightarrow\infty}E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=\lim_{n\rightarrow\infty}\left(\frac{\sigma^{2}}{n}\right)=0.</math>
 +
----

Latest revision as of 16:46, 13 March 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2001



3. (30 Points)

Let $ \mathbf{X}_{1},\cdots,\mathbf{X}_{n},\cdots $ be a sequence of random variables that are not necessarily statistically independent, but that each have identical mean $ \mu $ and variance $ \sigma^{2} $ . Let $ \mathbf{Y}_{1},\cdots,\mathbf{Y}_{n},\cdots $ be a sequence of random variable with $ \mathbf{Y}_{n}=\frac{1}{n}\sum_{k=1}^{n}\mathbf{X}_{k}. $

(a)

Given that $ \mathbf{X}_{1},\cdots,\mathbf{X}_{n},\cdots $ are uncorrelated, determine whether or not $ \left\{ \mathbf{Y}_{n}\right\} $ converges to $ \mu $ in the mean square sense.

(b)

Given that the covariance between $ \mathbf{X}_{j} $ and $ \mathbf{X}_{k} $ is given by
$ cov\left(\mathbf{X}_{j},\mathbf{X}_{k}\right)=\begin{cases} \begin{array}{lll} \sigma^{2} \text{, for }j=k\\ r\sigma^{2} \text{, for }\left|j-k\right|=1\\ 0 \text{, elsewhere, } \end{array}\end{cases} $
where $ -1\leq r\leq1 $ , determine whether or not $ \left\{ \mathbf{Y}_{n}\right\} $ converges to $ \mu $ in the mean square sense.


Share and discuss your solutions below.


Solution 1

(a)

$ E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=E\left[\mathbf{Y}_{n}^{2}\right]-2E\left[\mathbf{Y}_{n}\right]\mu+\mu^{2}. $ 

$ E\left[\mathbf{Y}_{n}\right]=\frac{1}{n}\sum_{k=1}^{n}E\left[\mathbf{X}_{k}\right]=\mu. $

$ E\left[\mathbf{Y}_{n}^{2}\right]=E\left[\frac{1}{n^{2}}\sum_{k=1}^{n}\sum_{l=1}^{n}\mathbf{X}_{k}\mathbf{X}_{l}\right]=\frac{1}{n^{2}}\sum_{k=1}^{n}\sum_{l=1}^{n}E\left[\mathbf{X}_{k}\mathbf{X}_{l}\right] $$ =\frac{1}{n^{2}}\sum_{k=1}^{n}E\left[\mathbf{X}_{k}^{2}\right]+\frac{1}{n^{2}}\underset{k\neq l}{\sum_{k=1}^{n}\sum_{l=1}^{n}}E\left[\mathbf{X}_{k}\right]E\left[\mathbf{X}_{l}\right] $$ =\frac{1}{n}\left(\mu^{2}+\sigma^{2}\right)+\frac{n\left(n-1\right)}{n^{2}}\mu^{2}=\frac{1}{n}\mu^{2}+\frac{1}{n}\sigma^{2}+\mu^{2}-\frac{1}{n}\mu^{2} $$ =\frac{\sigma^{2}}{n}+\mu^{2}. $

$ E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=E\left[\mathbf{Y}_{n}^{2}\right]-2E\left[\mathbf{Y}_{n}\right]\mu+\mu^{2}=\frac{\sigma^{2}}{n}+\mu^{2}-2\mu\cdot\mu+\mu^{2}=\frac{\sigma^{2}}{n}. $ $ \lim_{n\rightarrow\infty}E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=\lim_{n\rightarrow\infty}\left(\frac{\sigma^{2}}{n}\right)=0. $

(b)

Given that the covariance between $ \mathbf{X}_{j} $ and $ \mathbf{X}_{k} $ is given by
$ cov\left(\mathbf{X}_{j},\mathbf{X}_{k}\right)=\begin{cases} \begin{array}{lll} \sigma^{2} \text{, for }j=k\\ r\sigma^{2} \text{, for }\left|j-k\right|=1\\ 0 \text{, elsewhere, } \end{array}\end{cases} $
where $ -1\leq r\leq1 $ , determine whether or not $ \left\{ \mathbf{Y}_{n}\right\} $ converges to $ \mu $ in the mean square sense.

$ E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=E\left[\left|\frac{1}{n}\sum_{k=1}^{n}\left(\mathbf{X}_{k}-\mu\right)\right|^{2}\right]=\frac{1}{n^{2}}\sum_{k=1}^{n}\sum_{l=1}^{n}E\left[\left(\mathbf{X}_{k}-\mu\right)\left(\mathbf{X}_{l}-\mu\right)\right] $$ =\frac{1}{n^{2}}\sum_{k=1}^{n}E\left[\left(\mathbf{X}_{k}-\mu\right)^{2}\right]+\frac{1}{n^{2}}\underset{k\neq l}{\sum_{k=1}^{n}\sum_{l=1}^{n}}E\left[\left(\mathbf{X}_{k}-\mu\right)\left(\mathbf{X}_{l}-\mu\right)\right] $$ =\frac{1}{n}\sigma^{2}+\frac{2\left(n-1\right)}{n^{2}}r\sigma^{2}. $

$ \lim_{n\rightarrow\infty}E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=\lim_{n\rightarrow\infty}\left(\frac{1}{n}\sigma^{2}+\frac{2\left(n-1\right)}{n^{2}}r\sigma^{2}\right)=0. $

Thus, $ \mathbf{Y}_{n} $ converges in the mean square sense to $ \mu $ .


Solution 2

(a)

$ E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=E\left[\left|\frac{1}{n}\sum_{k=1}^{n}\left(\mathbf{X}_{k}-\mu\right)\right|^{2}\right]=\frac{1}{n^{2}}\sum_{k=1}^{n}\sum_{l=1}^{n}E\left[\left(\mathbf{X}_{k}-\mu\right)\left(\mathbf{X}_{l}-\mu\right)\right] $$ =\frac{1}{n^{2}}\sum_{k=1}^{n}E\left[\left(\mathbf{X}_{k}-\mu\right)^{2}\right]+\frac{1}{n^{2}}\underset{k\neq l}{\sum_{k=1}^{n}\sum_{l=1}^{n}}E\left[\mathbf{X}_{k}-\mu\right]E\left[\mathbf{X}_{l}-\mu\right] $$ =\frac{1}{n^{2}}\cdot n\cdot\sigma^{2}+\frac{1}{n^{2}}\cdot n\left(n-1\right)\cdot0^{2}=\frac{\sigma^{2}}{n}. $

$ \lim_{n\rightarrow\infty}E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=\lim_{n\rightarrow\infty}\left(\frac{\sigma^{2}}{n}\right)=0. $


Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics