(5 intermediate revisions by the same user not shown) | |||
Line 10: | Line 10: | ||
</font size> | </font size> | ||
− | Table of (double-sided) Z Transform Pairs and Properties | + | Table of (double-sided) [[info_z-transform|Z Transform]] Pairs and Properties |
− | + | (Used in [[ECE301]], [[ECE438]], [[ECE538]]) | |
</center> | </center> | ||
Line 21: | Line 21: | ||
{| | {| | ||
|- | |- | ||
− | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="3" | (double-sided) Z Transform and its Inverse | + | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="3" | (double-sided) [[info_z-transform|Z Transform]] and its Inverse |
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | [[info_z-transform|(Double-side) Z Transform]] |
− | | <math>X(z)=\mathcal{Z}(x[n])=\sum_{n=-\infty}^{\infty}x[n]z^{-n}</math> | + | | <math>X(z)=\mathcal{Z}(x[n])=\sum_{n=-\infty}^{\infty}x[n]z^{-n} \ </math> |
|[[info_z-transform|(info)]] | |[[info_z-transform|(info)]] | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | Inverse Z Transform | + | | align="right" style="padding-right: 1em;" | [[info_inverse_z-transform| Inverse Z Transform]] |
− | | <math>x[n]=\mathcal{Z}^{-1}(X(z))=\frac{1}{2\pi j}\oint_{c}X(z)z^{n-1}dz</math> | + | | <math>x[n]=\mathcal{Z}^{-1}(X(z))=\frac{1}{2\pi j}\oint_{c}X(z)z^{n-1}dz \ </math> |
| [[info_inverse_z-transform|(info)]] | | [[info_inverse_z-transform|(info)]] | ||
− | |-} | + | |- |
+ | |- | ||
+ | |} | ||
+ | |||
{| | {| | ||
|- | |- | ||
− | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="6" | Z Transform Pairs | + | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="6" | (double-sided) [[info_z-transform|Z Transform]] Pairs |
|- | |- | ||
| align="right" style="padding-right: 1em;" | | | align="right" style="padding-right: 1em;" | | ||
Line 52: | Line 55: | ||
| <math> u[n]\ </math> | | <math> u[n]\ </math> | ||
| | | | ||
− | | <math> \frac{1}{1-z^{-1}} </math> | + | | <math> \frac{1}{1-z^{-1}} \ </math> |
| | | | ||
− | | <math> |z| > 1\ </math> | + | | <math> |z| > 1\ </math> [[Compute_z-transform_u_n_ECE301S11|(computation)]] |
|- | |- | ||
| align="right" style="padding-right: 1em;" | | | align="right" style="padding-right: 1em;" | | ||
Line 140: | Line 143: | ||
| | | | ||
| <math> |z| > r\ </math> | | <math> |z| > r\ </math> | ||
+ | |- | ||
|} | |} | ||
{| | {| | ||
|- | |- | ||
− | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="6" | Z Transform Properties | + | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="6" | (double-sided) [[info_z-transform|Z Transform]] Properties |
|- | |- | ||
! colspan="6" | Below <math>x[n]</math>, <math>x_1[n]</math> and <math>x_2[n]</math> are DT signals with z-transforms <math>X(z)</math>, <math>X_1(Z)</math>, <math>X_2(z)</math>, and region of convergence (ROC) <math>R</math>, <math>R_1</math>, <math>R_2</math>, respectively. | ! colspan="6" | Below <math>x[n]</math>, <math>x_1[n]</math> and <math>x_2[n]</math> are DT signals with z-transforms <math>X(z)</math>, <math>X_1(Z)</math>, <math>X_2(z)</math>, and region of convergence (ROC) <math>R</math>, <math>R_1</math>, <math>R_2</math>, respectively. | ||
Line 183: | Line 187: | ||
| <math> R\ </math> | | <math> R\ </math> | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | Modulation [[Practice_prove_modulation_property_z_transform| (proof)]] |
− | + | ||
− | | | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
| <math> a^{n}x[n]\ </math> | | <math> a^{n}x[n]\ </math> | ||
| | | | ||
| <math> X(a^{-1}z)\ </math> | | <math> X(a^{-1}z)\ </math> | ||
| | | | ||
− | | <math> Scaled | + | | <math> |a_0| R </math> (Scaled version of) <math> R\ </math> |
|- | |- | ||
| align="right" style="padding-right: 1em;" | | | align="right" style="padding-right: 1em;" | | ||
Line 270: | Line 267: | ||
| | | | ||
| <math> R\ </math> | | <math> R\ </math> | ||
+ | |- | ||
|} | |} | ||
{| | {| | ||
|- | |- | ||
− | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Other Z Transform Properties | + | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Other [[info_z-transform|Z Transform]] Properties |
+ | |- | ||
|- | |- | ||
| align="right" style="padding-right: 1em;" | Initial Value Theorem | | align="right" style="padding-right: 1em;" | Initial Value Theorem | ||
Line 281: | Line 280: | ||
---- | ---- | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | [[ | + | [[Collective_Table_of_Formulas|Back to Collective Table]] |
Latest revision as of 07:55, 6 March 2015
Table of (double-sided) Z Transform Pairs and Properties
(double-sided) Z Transform and its Inverse | ||
---|---|---|
(Double-side) Z Transform | $ X(z)=\mathcal{Z}(x[n])=\sum_{n=-\infty}^{\infty}x[n]z^{-n} \ $ | (info) |
Inverse Z Transform | $ x[n]=\mathcal{Z}^{-1}(X(z))=\frac{1}{2\pi j}\oint_{c}X(z)z^{n-1}dz \ $ | (info) |
(double-sided) Z Transform Pairs | |||||
---|---|---|---|---|---|
Signal | Transform | Region of convergence (ROC) | |||
Unit impulse signal | $ \delta[n]\ $ | $ 1\ $ | All complex $ z\ $ including $ \infty $ | ||
Unit step signal | $ u[n]\ $ | $ \frac{1}{1-z^{-1}} \ $ | $ |z| > 1\ $ (computation) | ||
$ -u[-n-1]\ $ | $ \frac{1}{1-z^{-1}} $ | $ |z| < 1\ $ | |||
Shifted unit impulse signal | $ \delta[n-m]\ $ | $ z^{-m}\ $ | $ All\ z,\ except\ $ | ||
$ 0\ (if\ m>0)\ or\ $ | |||||
$ \infty \ (if\ m<0)\ $ | |||||
$ \alpha^{n}u[n]\ $ | $ \frac{1}{1-\alpha z^{-1}} $ | $ |z| > | \alpha |\ $ | |||
$ -\alpha^{n}u[-n-1]\ $ | $ \frac{1}{1-\alpha z^{-1}} $ | $ |z| < | \alpha |\ $ | |||
$ n\alpha^{n}u[n]\ $ | $ \frac{\alpha z^{-1}}{(1-\alpha z^{-1})^{2}} $ | $ |z| > | \alpha |\ $ | |||
$ -n\alpha^{n}u[-n-1]\ $ | $ \frac{\alpha z^{-1}}{(1-\alpha z^{-1})^{2}} $ | $ |z| < | \alpha |\ $ | |||
Single-side cosine signal | $ [\cos{\omega_{0}n}]u[n]\ $ | $ \frac{1-[\cos{\omega_{0}}]z^{-1}}{1-[2\cos{\omega_{0}}]z^{-1}+z^{-2}} $ | $ |z| > 1\ $ | ||
Single-side sine signal | $ [\sin{\omega_{0}n}]u[n]\ $ | $ \frac{1-[\sin{\omega_{0}}]z^{-1}}{1-[2\cos{\omega_{0}}]z^{-1}+z^{-2}} $ | $ |z| > 1\ $ | ||
$ [r^{n}\cos{\omega_{0}n}]u[n]\ $ | $ \frac{1-[r\cos{\omega_{0}}]z^{-1}}{1-[2r\cos{\omega_{0}}]z^{-1}+r^{2}z^{-2}} $ | $ |z| > r\ $ | |||
$ [r^{n}\sin{\omega_{0}n}]u[n]\ $ | $ \frac{1-[r\sin{\omega_{0}}]z^{-1}}{1-[2r\cos{\omega_{0}}]z^{-1}+r^{2}z^{-2}} $ | $ |z| > r\ $ |
(double-sided) Z Transform Properties | |||||
---|---|---|---|---|---|
Below $ x[n] $, $ x_1[n] $ and $ x_2[n] $ are DT signals with z-transforms $ X(z) $, $ X_1(Z) $, $ X_2(z) $, and region of convergence (ROC) $ R $, $ R_1 $, $ R_2 $, respectively. | |||||
Signal | Z-Transform | ROC | |||
Linearity | $ ax_{1}[n]+bx_{2}[n]\ $ | $ aX_{1}(z)+bX_{2}[z]\ $ | $ At\ least\ the\ intersection\ of\ R_{1}\ and\ R_{2}\ $ | ||
Time shifting | $ x[n-n_{0}]\ $ | $ z^{-n_{0}}X(z)\ $ | $ R,\ except\ for\ the\ possible\ addition\ $ | ||
$ or\ deletion\ of\ the\ origin\ $ | |||||
Scaling in the z-domain | $ e^{j\omega_{0}n}x[n]\ $ | $ X(e^{j\omega_{0}}z)\ $ | $ R\ $ | ||
Modulation (proof) | $ a^{n}x[n]\ $ | $ X(a^{-1}z)\ $ | $ |a_0| R $ (Scaled version of) $ R\ $ | ||
$ (i.e.,\ |a|R=\ the\ set\ of\ points\ {|a|z}\ for\ z\ in\ R)\ $ | |||||
Time reversal | $ x[-n]\ $ | $ X(z^{-1})\ $ | $ R^{1/k}\ (i.e.,\ the\ set\ of\ points\ z^{1/k},\ $ | ||
$ where\ z\ is\ in\ R)\ $ | |||||
Time expansion | $ x^{(k)}= \begin{cases} x[r], &n=rk \\ 0, &n\neq rk \end{cases} $ | $ X(z^{k})\ $ | $ R^{1/k}\ (i.e.,\ the\ set\ of\ points\ z^{1/k},\ $ | ||
$ where\ z\ is\ in\ R)\ $ | |||||
Conjugation | $ x^{*}[n]\ $ | $ X^{*}(z^{*})\ $ | $ R\ $ | ||
Convolution | $ x_{1}[n]*x_{2}[n]\ $ | $ X_{1}(z)X_{2}(z)\ $ | $ At\ least\ the\ intersection\ of\ R_{1}\ and\ R_{2}\ $ | ||
First difference | $ x[n]-x[n-1]\ $ | $ (1-z^{-1})X(z)\ $ | $ At\ least\ the\ intersection\ of\ R\ and\ |z|>0\ $ | ||
Accumulation | $ \sum_{k=-\infty}^{n}x[k]\ $ | $ \frac{1}{(1-z^{-1})}X(z)\ $ | $ At\ least\ the\ intersection\ of\ R\ and\ |z|>1\ $ | ||
Differentiation in the z-domain | $ nx[n]\ $ | $ -z\frac{dX(z)}{dz}\ $ | $ R\ $ |
Other Z Transform Properties | |
---|---|
Initial Value Theorem | $ If\ x[n]=0\ for\ n<0,\ then\ x[0]=\lim_{z\rightarrow \infty}X(z)\ $ |