(One intermediate revision by the same user not shown) | |||
Line 21: | Line 21: | ||
| align="right" style="padding-right: 1em;" | [[signal_energy_CT|(info)]] CT signal energy ||<math>E_\infty=\int_{-\infty}^\infty | x(t) |^2 dt </math> | | align="right" style="padding-right: 1em;" | [[signal_energy_CT|(info)]] CT signal energy ||<math>E_\infty=\int_{-\infty}^\infty | x(t) |^2 dt </math> | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | [[signal_power_CT|(info)]] CT signal average power ||<math>P_\infty = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left | x (t) \right |^2 \, dt </math> | + | | align="right" style="padding-right: 1em;" | [[signal_power_CT|(info)]] CT signal (average) power ||<math>P_\infty = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left | x (t) \right |^2 \, dt </math> |
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | CT signal area ||<math>A_x = \int_{-\infty}^{\infty} x (t) \, dt </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | Average value of a CT signal ||<math>\bar{x} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x (t) \, dt </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | CT signal magnitude ||<math>M_x = \max_{-\infty<t<\infty} \left | x (t) \right | </math> | ||
|- | |- | ||
! colspan="2" style="background: #eee;" | Metrics for Discrete-time Signals | ! colspan="2" style="background: #eee;" | Metrics for Discrete-time Signals | ||
Line 28: | Line 34: | ||
|- | |- | ||
| align="right" style="padding-right: 1em;" | DT signal average power ||<math>P_\infty = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} \left | x [n] \right |^2 \, </math> | | align="right" style="padding-right: 1em;" | DT signal average power ||<math>P_\infty = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} \left | x [n] \right |^2 \, </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | DT signal area ||<math>A_x = \sum_{n=-\infty}^{\infty} x [n] \, </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | Average value of a DT signal ||<math>\bar{x} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} x [n] \, </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | DT signal magnitude ||<math>M_x = \max_{-\infty<t<\infty} \left | x [n] \right | </math> | ||
|- | |- | ||
|} | |} |
Latest revision as of 13:54, 25 February 2015
keywords: energy, power, signal
Signal Metrics Definitions and Formulas
Metrics for Continuous-time Signals | |
---|---|
(info) CT signal energy | $ E_\infty=\int_{-\infty}^\infty | x(t) |^2 dt $ |
(info) CT signal (average) power | $ P_\infty = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left | x (t) \right |^2 \, dt $ |
CT signal area | $ A_x = \int_{-\infty}^{\infty} x (t) \, dt $ |
Average value of a CT signal | $ \bar{x} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x (t) \, dt $ |
CT signal magnitude | $ M_x = \max_{-\infty<t<\infty} \left | x (t) \right | $ |
Metrics for Discrete-time Signals | |
DT signal energy | $ E_\infty=\sum_{n=-\infty}^\infty | x[n] |^2 $ |
DT signal average power | $ P_\infty = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} \left | x [n] \right |^2 \, $ |
DT signal area | $ A_x = \sum_{n=-\infty}^{\infty} x [n] \, $ |
Average value of a DT signal | $ \bar{x} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} x [n] \, $ |
DT signal magnitude | $ M_x = \max_{-\infty<t<\infty} \left | x [n] \right | $ |