m (Protected "SignalMetricsFormula" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
[[Category:Formulas]]
 
[[Category:Formulas]]
 +
 +
keywords: energy, power, signal
  
 
<center><font size= 4>
 
<center><font size= 4>
Line 7: Line 9:
 
'''Signal Metrics Definitions and Formulas'''
 
'''Signal Metrics Definitions and Formulas'''
  
click [[Collective_Table_of_Formulas|here]] for [[Collective_Table_of_Formulas|more formulas]]
+
(used in [[ECE301]] and [[ECE438]])
  
 
</center>
 
</center>
Line 14: Line 16:
  
 
{|
 
{|
|-
 
! colspan="2" style="background:  #e4bc7e; font-size: 110%;" | Signal Metrics Definitions and Formulas
 
 
|-
 
|-
 
! colspan="2" style="background: #eee;" | Metrics for Continuous-time Signals
 
! colspan="2" style="background: #eee;" | Metrics for Continuous-time Signals
Line 21: Line 21:
 
| align="right" style="padding-right: 1em;" | [[signal_energy_CT|(info)]] CT signal energy ||<math>E_\infty=\int_{-\infty}^\infty | x(t) |^2 dt </math>
 
| align="right" style="padding-right: 1em;" | [[signal_energy_CT|(info)]] CT signal energy ||<math>E_\infty=\int_{-\infty}^\infty | x(t) |^2 dt </math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | [[signal_power_CT|(info)]] CT signal average power ||<math>P_\infty = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left | x (t) \right |^2 \, dt </math>
+
| align="right" style="padding-right: 1em;" | [[signal_power_CT|(info)]] CT signal (average) power ||<math>P_\infty = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left | x (t) \right |^2 \, dt </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | CT signal area ||<math>A_x =  \int_{-\infty}^{\infty}  x (t)  \, dt </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | Average value of a CT signal ||<math>\bar{x}  = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T}  x (t) \, dt </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | CT signal magnitude ||<math>M_x = \max_{-\infty<t<\infty} \left | x (t) \right |  </math>
 
|-
 
|-
 
! colspan="2" style="background: #eee;" |  Metrics for Discrete-time Signals
 
! colspan="2" style="background: #eee;" |  Metrics for Discrete-time Signals
Line 28: Line 34:
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | DT signal average power ||<math>P_\infty = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} \left | x [n] \right |^2 \, </math>
 
| align="right" style="padding-right: 1em;" | DT signal average power ||<math>P_\infty = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} \left | x [n] \right |^2 \, </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | DT signal area ||<math>A_x =  \sum_{n=-\infty}^{\infty}  x [n]  \, </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | Average value of a DT signal ||<math>\bar{x} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N}  x [n]  \, </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | DT signal magnitude ||<math>M_x = \max_{-\infty<t<\infty} \left | x [n] \right |  </math>
 
|-  
 
|-  
 
|}
 
|}

Latest revision as of 13:54, 25 February 2015


keywords: energy, power, signal

Collective Table of Formulas

Signal Metrics Definitions and Formulas

(used in ECE301 and ECE438)


Metrics for Continuous-time Signals
(info) CT signal energy $ E_\infty=\int_{-\infty}^\infty | x(t) |^2 dt $
(info) CT signal (average) power $ P_\infty = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left | x (t) \right |^2 \, dt $
CT signal area $ A_x = \int_{-\infty}^{\infty} x (t) \, dt $
Average value of a CT signal $ \bar{x} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x (t) \, dt $
CT signal magnitude $ M_x = \max_{-\infty<t<\infty} \left | x (t) \right | $
Metrics for Discrete-time Signals
DT signal energy $ E_\infty=\sum_{n=-\infty}^\infty | x[n] |^2 $
DT signal average power $ P_\infty = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} \left | x [n] \right |^2 \, $
DT signal area $ A_x = \sum_{n=-\infty}^{\infty} x [n] \, $
Average value of a DT signal $ \bar{x} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} x [n] \, $
DT signal magnitude $ M_x = \max_{-\infty<t<\infty} \left | x [n] \right | $

Back to Collective Table

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang