(28 intermediate revisions by the same user not shown)
Line 21: Line 21:
  
 
a) Write a difference equation that can be used to implement this filter.  
 
a) Write a difference equation that can be used to implement this filter.  
 +
 +
<math>
 +
\begin{align}
 +
y[m,n] =& \frac{1}{16}(x[m+1,n-1] + 2x[m,n-1] + x[m-1,n-1] \\
 +
& + 2x[m+1,n] + 4x[m,n] + 2x[m-1,n] \\
 +
& + x[m+1,n+1] + 2x[m,n+1] + x[m-1,n+1])
 +
\end{align}</math>
  
 
b) Is this filter separable? Answer yes/no and justify your answer.  
 
b) Is this filter separable? Answer yes/no and justify your answer.  
 +
 +
Yes. The coefficient matrix of h[m,n] can be written as product of two vectors.
 +
 +
<math>
 +
\begin{pmatrix}
 +
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
 +
\frac{2}{16} & \frac{4}{16}  & \frac{2}{16} \\
 +
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
 +
\end{pmatrix} =
 +
\begin{pmatrix}
 +
\frac{1}{4}  \\
 +
\frac{2}{4} \\
 +
\frac{1}{4}
 +
\end{pmatrix} \cdot
 +
\begin{pmatrix}
 +
\frac{1}{4} & \frac{2}{4} & \frac{1}{4}
 +
\end{pmatrix}
 +
</math>
 +
 +
Therefore the filter can be decomposed to two 1-D filters.
 +
 +
<math>h_1[m] = \frac{1}{4}(\delta[m+1] + 2\delta[m] +\delta[m-1])</math>
 +
 +
<math>h_2[n] = \frac{1}{4}(\delta[n+1] + 2\delta[n] +\delta[n-1])</math>
 +
  
 
c) Compute the DSFT H(u,v) of this filter. Sketch the plot of H(u,0). Sketch the plot of H(0,v). What are the characteristics of this filter (low-pass, band-pass, or high-pass)?
 
c) Compute the DSFT H(u,v) of this filter. Sketch the plot of H(u,0). Sketch the plot of H(0,v). What are the characteristics of this filter (low-pass, band-pass, or high-pass)?
 +
 +
 +
<math>H_1(\mu) = DTFT\{h_1[m]\} = \frac{1}{4}(e^{j\mu} + 2 + e^{-j\mu}) = \frac{1}{2}(1 + cos\mu)</math>
 +
 +
<math>H_2(\nu) = DTFT\{h_2[n]\} = \frac{1}{4}(e^{j\nu} + 2 + e^{-j\nu}) = \frac{1}{2}(1 + cos\nu)</math>
 +
 +
Using the separability,
 +
 +
<math>H(\mu, \nu) = DSFT\{ h[m,n]\} = H_1(\mu)\cdot H_2(\nu) = \frac{1}{4}(1 + cos\mu)(1 + cos\nu)</math>
 +
 +
<math>H(\mu, 0) = \frac{1}{2}(1 + cos\mu)</math>
 +
 +
[[Image:HW11_prob1_1.jpg]]
 +
 +
So, <math>H(\mu, 0)</math> is a low-pass filter.
 +
 +
 +
<math>H(0, \nu) = \frac{1}{2}(1+cos\nu)</math>
 +
 +
[[Image:HW11_prob1_2.jpg]]
 +
 +
So, <math>H(0, \nu)</math> is a low-pass filter.
 +
  
 
d) What is the output image when this filter is applied to the following image (using symmetric boundary conditions)?  
 
d) What is the output image when this filter is applied to the following image (using symmetric boundary conditions)?  
Line 43: Line 98:
 
\end{array}
 
\end{array}
 
</math>  
 
</math>  
 +
 +
<math>g[m,n]**h[m,n]: \frac{1}{16} X
 +
\begin{array}{cccccccccccc}
 +
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
 +
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
 +
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
 +
1 & 3 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 3 & 1\\
 +
3 & 9 &12 &12 &12 &12 &12 &12 &12 & 9 & 3\\
 +
4 &12 &16 &16 &16 &16 &16 &16 &16 &12 & 4\\
 +
4 &12 &16 &16 &16 &16 &16 &16 &16 &12 & 4\\
 +
4 &12 &16 &16 &16 &16 &16 &16 &16 &12 & 4\\
 +
4 &12 &16 &16 &16 &16 &16 &16 &16 &12 & 4\\
 +
3 & 9 &12 &12 &12 &12 &12 &12 &12 & 9 & 3\\
 +
1 & 3 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 3 & 1\\
 +
\end{array}</math>
 +
 
----
 
----
  
Line 58: Line 129:
  
 
a) Write a difference equation that can be used to implement this filter.  
 
a) Write a difference equation that can be used to implement this filter.  
 +
 +
<math>
 +
\begin{align}
 +
y[m,n] =& -\frac{1}{9}(x[m+1,n-1] + x[m,n-1] + x[m-1,n-1] \\
 +
& + x[m+1,n] + 8 x[m,n] + x[m-1,n] \\
 +
& + x[m+1,n+1] + x[m,n+1] + x[m-1,n+1])
 +
\end{align}</math>
 +
  
 
b) Is this filter separable? Answer yes/no and justify your answer.  
 
b) Is this filter separable? Answer yes/no and justify your answer.  
 +
 +
No. The coefficient matrix of h[m,n] cannot be decomposed to two vectors.
 +
  
 
c) Compute the DSFT H(u,v) of this filter. Sketch the plot of H(u,0). Sketch the plot of H(0,v). What are the characteristics of this filter (low-pass, band-pass, or high-pass)?
 
c) Compute the DSFT H(u,v) of this filter. Sketch the plot of H(u,0). Sketch the plot of H(0,v). What are the characteristics of this filter (low-pass, band-pass, or high-pass)?
 +
 +
<math>\begin{align}
 +
H(\mu, \nu) = DTFT\{h[m,n]\} =& -\frac{1}{9} (e^{j(\mu-\nu)} + e^{j(-\nu)} + e^{j(-\mu-\nu)}  \\
 +
& + e^{j(\mu)} + 8 e^{(0)} + e^{j(-\mu)}  \\
 +
& + e^{j(\mu+\nu)} + e^{j(\nu)} + e^{j(-\mu+\nu)} )
 +
\end{align}</math>
 +
 +
<math>\begin{align}
 +
H(\mu, 0) =& -\frac{1}{9}( e^{j\mu} + e^{-j\nu}  \\
 +
& + e^{j\mu} + 8 + e^{-j\nu}  \\
 +
& + e^{j\mu} + e^{-j\nu} ) \\
 +
=& -\frac{1}{9}(8+6cos{\mu})
 +
\end{align}</math>
 +
 +
<math>\begin{align}
 +
H(0, \nu) =& -\frac{1}{9} (e^{-j\nu} + e^{-j\nu} + e^{-j\nu}  \\
 +
& + 8  \\
 +
& + e^{j\nu} + e^{j\nu} + e^{j\nu}) \\
 +
=& -\frac{1}{9}(8+6cos{\mu})
 +
\end{align}</math>
 +
 +
<math>|H(\mu, 0)| = \frac{1}{9}(8+6cos{\mu})</math>
 +
 +
[[Image:HW11_prob2_1.jpg]]
 +
 +
So, <math>H(\mu, 0)</math> is a high-pass filter.
 +
 +
 +
<math>|H(0, \nu)| = \frac{1}{9}(8+6cos{\nu})</math>
 +
 +
[[Image:HW11_prob2_2.jpg]]
 +
 +
So, <math>H(0, \nu)</math> is a high-pass filter.
 +
  
 
d) What is the output image when this filter is applied to the following image (using symmetric boundary conditions)?  
 
d) What is the output image when this filter is applied to the following image (using symmetric boundary conditions)?  
Line 79: Line 195:
 
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
 
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
 
\end{array}
 
\end{array}
</math>  
+
</math>
 +
 
 +
<math>g[m,n]**h[m,n]: \frac{1}{9} X
 +
\begin{array}{cccccccccccc}
 +
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
 +
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
 +
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
 +
-1&-2 &-3 &-3 &-3 &-3 &-3 &-3 &-3 &-2 & 1\\
 +
-2& 5 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 5 &-2\\
 +
-3& 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 &-3\\
 +
-3& 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 &-3\\
 +
-3& 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 &-3\\
 +
-3& 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 &-3\\
 +
-2& 5 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 5 &-2\\
 +
-1&-2 &-3 &-3 &-3 &-3 &-3 &-3 &-3 &-2 & 1\\
 +
\end{array}</math>
 +
 +
 
 
----
 
----
  
Line 123: Line 256:
 
</math>
 
</math>
  
Therefore the filter can be separate into two 1-D filters.
+
Therefore the filter can be separated into two 1-D filters.
  
 
<math>h_1[m] = -\frac{1}{4}\delta[m+1] + \delta[m] -\frac{1}{4}\delta[m-1]</math>  
 
<math>h_1[m] = -\frac{1}{4}\delta[m+1] + \delta[m] -\frac{1}{4}\delta[m-1]</math>  
Line 174: Line 307:
  
 
<math>g[m,n]**h[m,n]:
 
<math>g[m,n]**h[m,n]:
 +
\frac{1}{9} X
 
\begin{array}{cccccccccccc}
 
\begin{array}{cccccccccccc}
0 & 0 & 0 & 0 & -\frac{1}{8} & \frac{1}{2} & -\frac{1}{8} & 0 & 0 & 0& 0 \\
+
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
0 & 0 & 0 & -\frac{1}{8} & \frac{1}{8} & \frac{10}{8} & \frac{1}{8} & -\frac{1}{8} & 0 & 0 & 0 \\
+
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
0 & 0 & -\frac{1}{8} & \frac{1}{8} & \frac{7}{8} & \frac{10}{8} & \frac{7}{8} & \frac{1}{8} & -\frac{1}{8} & 0 & 0 \\
+
0 & 0 &-1 & 3 & 2 & 2 & 2 & 3 &-1 & 0 & 0\\
0 & -\frac{1}{8} & \frac{1}{8} & \frac{7}{8} & \frac{9}{8} & 1 & \frac{9}{8} & \frac{7}{8} & \frac{1}{8} & -\frac{1}{8} & 0 \\
+
0 &-1 & 1 & 8 & 6 & 6 & 6 & 8 & 1 &-1 & 0\\
-\frac{1}{8} & \frac{1}{8} & \frac{7}{8} & \frac{9}{8} & 1 & 1 & 1 & \frac{9}{8} & \frac{7}{8} & \frac{1}{8} & -\frac{1}{8} \\
+
-1& 1 & 7 & 9 & 8 & 8 & 8 & 9 & 7 & 1 &-1\\
-\frac{3}{8} & 1 & \frac{9}{8} & 1 & 1 & 1 & 1 & 1 & \frac{9}{8} & 1 & -\frac{3}{8} \\
+
-3& 8 & 9 & 8 & 8 & 8 & 8 & 8 & 9 & 8 &-3\\
-\frac{1}{2} & \frac{3}{2} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \frac{3}{2} & -\frac{1}{2} \\
+
-4&12 & 8 & 8 & 8 & 8 & 8 & 8 & 8 &12 &-4\\
-\frac{1}{2} & \frac{3}{2} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \frac{3}{2} & -\frac{1}{2} \\
+
-4&12 & 8 & 8 & 8 & 8 & 8 & 8 & 8 &12 &-4\\
-\frac{1}{2} & \frac{3}{2} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \frac{3}{2} & -\frac{1}{2} \\
+
-4&12 & 8 & 8 & 8 & 8 & 8 & 8 & 8 &12 &-4\\
-\frac{3}{8} & \frac{9}{8} & \frac{6}{8} & \frac{6}{8} & \frac{6}{8} & \frac{6}{8} & \frac{6}{8} & \frac{6}{8} & \frac{6}{8} & \frac{9}{8} & -\frac{3}{8} \\
+
-3& 9 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 9 &-3\\
-\frac{1}{8} & \frac{3}{8} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{3}{8} & -\frac{1}{8}
+
-1& 3 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 3 &-1\\
\end{array}</math>
+
\end{array} </math>
  
  

Latest revision as of 15:07, 2 December 2014


Homework 11, ECE438, Fall 2014, Prof. Boutin


Question 1

Consider the following filter:

$ h[m,n]: \begin{array}{cccc} & m=-1 & m=0 & m=1 \\ n=1&\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\ n=0&\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\ n=-1&\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \end{array} $

a) Write a difference equation that can be used to implement this filter.

$ \begin{align} y[m,n] =& \frac{1}{16}(x[m+1,n-1] + 2x[m,n-1] + x[m-1,n-1] \\ & + 2x[m+1,n] + 4x[m,n] + 2x[m-1,n] \\ & + x[m+1,n+1] + 2x[m,n+1] + x[m-1,n+1]) \end{align} $

b) Is this filter separable? Answer yes/no and justify your answer.

Yes. The coefficient matrix of h[m,n] can be written as product of two vectors.

$ \begin{pmatrix} \frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\ \frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\ \frac{1}{16} & \frac{2}{16} & \frac{1}{16} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} \\ \frac{2}{4} \\ \frac{1}{4} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} & \frac{2}{4} & \frac{1}{4} \end{pmatrix} $

Therefore the filter can be decomposed to two 1-D filters.

$ h_1[m] = \frac{1}{4}(\delta[m+1] + 2\delta[m] +\delta[m-1]) $

$ h_2[n] = \frac{1}{4}(\delta[n+1] + 2\delta[n] +\delta[n-1]) $


c) Compute the DSFT H(u,v) of this filter. Sketch the plot of H(u,0). Sketch the plot of H(0,v). What are the characteristics of this filter (low-pass, band-pass, or high-pass)?


$ H_1(\mu) = DTFT\{h_1[m]\} = \frac{1}{4}(e^{j\mu} + 2 + e^{-j\mu}) = \frac{1}{2}(1 + cos\mu) $

$ H_2(\nu) = DTFT\{h_2[n]\} = \frac{1}{4}(e^{j\nu} + 2 + e^{-j\nu}) = \frac{1}{2}(1 + cos\nu) $

Using the separability,

$ H(\mu, \nu) = DSFT\{ h[m,n]\} = H_1(\mu)\cdot H_2(\nu) = \frac{1}{4}(1 + cos\mu)(1 + cos\nu) $

$ H(\mu, 0) = \frac{1}{2}(1 + cos\mu) $

HW11 prob1 1.jpg

So, $ H(\mu, 0) $ is a low-pass filter.


$ H(0, \nu) = \frac{1}{2}(1+cos\nu) $

HW11 prob1 2.jpg

So, $ H(0, \nu) $ is a low-pass filter.


d) What is the output image when this filter is applied to the following image (using symmetric boundary conditions)?

$ g[m,n]: \begin{array}{ccccccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ \end{array} $

$ g[m,n]**h[m,n]: \frac{1}{16} X \begin{array}{cccccccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 1 & 3 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 3 & 1\\ 3 & 9 &12 &12 &12 &12 &12 &12 &12 & 9 & 3\\ 4 &12 &16 &16 &16 &16 &16 &16 &16 &12 & 4\\ 4 &12 &16 &16 &16 &16 &16 &16 &16 &12 & 4\\ 4 &12 &16 &16 &16 &16 &16 &16 &16 &12 & 4\\ 4 &12 &16 &16 &16 &16 &16 &16 &16 &12 & 4\\ 3 & 9 &12 &12 &12 &12 &12 &12 &12 & 9 & 3\\ 1 & 3 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 3 & 1\\ \end{array} $


Question 2

Consider the following filter:

$ h[m,n]: \begin{array}{cccc} & m=-1 & m=0 & m=1 \\ n=1&-\frac{1}{9} & -\frac{1}{9} & -\frac{1}{9} \\ n=0&-\frac{1}{9} & -\frac{8}{9} & -\frac{1}{9} \\ n=-1&-\frac{1}{9} &- \frac{1}{9} & -\frac{1}{9} \end{array} $

a) Write a difference equation that can be used to implement this filter.

$ \begin{align} y[m,n] =& -\frac{1}{9}(x[m+1,n-1] + x[m,n-1] + x[m-1,n-1] \\ & + x[m+1,n] + 8 x[m,n] + x[m-1,n] \\ & + x[m+1,n+1] + x[m,n+1] + x[m-1,n+1]) \end{align} $


b) Is this filter separable? Answer yes/no and justify your answer.

No. The coefficient matrix of h[m,n] cannot be decomposed to two vectors.


c) Compute the DSFT H(u,v) of this filter. Sketch the plot of H(u,0). Sketch the plot of H(0,v). What are the characteristics of this filter (low-pass, band-pass, or high-pass)?

$ \begin{align} H(\mu, \nu) = DTFT\{h[m,n]\} =& -\frac{1}{9} (e^{j(\mu-\nu)} + e^{j(-\nu)} + e^{j(-\mu-\nu)} \\ & + e^{j(\mu)} + 8 e^{(0)} + e^{j(-\mu)} \\ & + e^{j(\mu+\nu)} + e^{j(\nu)} + e^{j(-\mu+\nu)} ) \end{align} $

$ \begin{align} H(\mu, 0) =& -\frac{1}{9}( e^{j\mu} + e^{-j\nu} \\ & + e^{j\mu} + 8 + e^{-j\nu} \\ & + e^{j\mu} + e^{-j\nu} ) \\ =& -\frac{1}{9}(8+6cos{\mu}) \end{align} $

$ \begin{align} H(0, \nu) =& -\frac{1}{9} (e^{-j\nu} + e^{-j\nu} + e^{-j\nu} \\ & + 8 \\ & + e^{j\nu} + e^{j\nu} + e^{j\nu}) \\ =& -\frac{1}{9}(8+6cos{\mu}) \end{align} $

$ |H(\mu, 0)| = \frac{1}{9}(8+6cos{\mu}) $

HW11 prob2 1.jpg

So, $ H(\mu, 0) $ is a high-pass filter.


$ |H(0, \nu)| = \frac{1}{9}(8+6cos{\nu}) $

HW11 prob2 2.jpg

So, $ H(0, \nu) $ is a high-pass filter.


d) What is the output image when this filter is applied to the following image (using symmetric boundary conditions)?

$ g[m,n]: \begin{array}{ccccccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ \end{array} $

$ g[m,n]**h[m,n]: \frac{1}{9} X \begin{array}{cccccccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ -1&-2 &-3 &-3 &-3 &-3 &-3 &-3 &-3 &-2 & 1\\ -2& 5 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 5 &-2\\ -3& 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 &-3\\ -3& 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 &-3\\ -3& 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 &-3\\ -3& 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 &-3\\ -2& 5 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 5 &-2\\ -1&-2 &-3 &-3 &-3 &-3 &-3 &-3 &-3 &-2 & 1\\ \end{array} $



Question 3

Consider the following filter:

$ h[m,n]: \begin{array}{cccc} & m=-1 & m=0 & m=1 \\ n=1&-\frac{1}{8} & \frac{1}{2} & -\frac{1}{8} \\ n=0&-\frac{1}{4} & 1 & -\frac{1}{4} \\ n=-1&-\frac{1}{8} & \frac{1}{2} & -\frac{1}{8} \end{array} $

a) Write a difference equation that can be used to implement this filter.

$ \begin{align} y[m,n] =& -\frac{1}{8}x[m+1,n-1] + \frac{1}{2}x[m,n-1] - \frac{1}{8}x[m-1,n-1] \\ & -\frac{1}{4}x[m+1,n] + x[m,n] -\frac{1}{4}x[m-1,n] \\ & -\frac{1}{8}x[m+1,n+1] + \frac{1}{2}x[m,n+1] -\frac{1}{8}x[m-1,n+1] \end{align} $

b) Is this filter separable? Answer yes/no and justify your answer.

Yes. The coefficient matrix of h[m,n] can be written as product of two vectors.

$ \begin{pmatrix} -\frac{1}{8} & \frac{1}{2} & -\frac{1}{8} \\ -\frac{1}{4} & 1 & -\frac{1}{4} \\ -\frac{1}{8} & \frac{1}{2} & -\frac{1}{8} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ 1 \\ \frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} -\frac{1}{4} & 1 & -\frac{1}{4} \end{pmatrix} $

Therefore the filter can be separated into two 1-D filters.

$ h_1[m] = -\frac{1}{4}\delta[m+1] + \delta[m] -\frac{1}{4}\delta[m-1] $

$ h_2[n] = \frac{1}{2}\delta[n+1] + \delta[n] +\frac{1}{2}\delta[n-1] $

c) Compute the DSFT H(u,v) of this filter. Sketch the plot of H(u,0). Sketch the plot of H(0,v). What are the characteristics of this filter (low-pass, band-pass, or high-pass)?


$ H_1(\mu) = DTFT\{h_1[m]\} = -\frac{1}{4}e^{-j\mu(-1)} + e^{-j\mu(0)} -\frac{1}{4}e^{-j\mu(1)} = 1-\frac{1}{2}cos\mu $

$ H_2(\nu) = DTFT\{h_2[n]\} = \frac{1}{2}e^{-j\nu(-1)} + e^{-j\nu(0)} +\frac{1}{2}e^{-j\nu(1)} = 1+cos\nu $

Using the separability,

$ H(\mu, \nu) = DSFT\{ h[m,n]\} = H_1(\mu)\cdot H_2(\nu) = (1-\frac{1}{2}cos\mu)(1+cos\nu) $

$ H(\mu, 0) = 2(1-\frac{1}{2}cos\mu) $

HW11 prob3 1.jpg

So, $ H(\mu, 0) $ is a high-pass filter.


$ H(0, \nu) = \frac{1}{2}(1+cos\nu) $

HW11 prob3 2.jpg

So, $ H(0, \nu) $ is a low-pass filter.


d) What is the output image when this filter is applied to the following image (using symmetric boundary conditions)?

$ g[m,n]: \begin{array}{ccccccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ \end{array} $


$ g[m,n]**h[m,n]: \frac{1}{9} X \begin{array}{cccccccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 &-1 & 3 & 2 & 2 & 2 & 3 &-1 & 0 & 0\\ 0 &-1 & 1 & 8 & 6 & 6 & 6 & 8 & 1 &-1 & 0\\ -1& 1 & 7 & 9 & 8 & 8 & 8 & 9 & 7 & 1 &-1\\ -3& 8 & 9 & 8 & 8 & 8 & 8 & 8 & 9 & 8 &-3\\ -4&12 & 8 & 8 & 8 & 8 & 8 & 8 & 8 &12 &-4\\ -4&12 & 8 & 8 & 8 & 8 & 8 & 8 & 8 &12 &-4\\ -4&12 & 8 & 8 & 8 & 8 & 8 & 8 & 8 &12 &-4\\ -3& 9 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 9 &-3\\ -1& 3 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 3 &-1\\ \end{array} $




Discussion

You may discuss the homework below.

  • write comment/question here
    • answer will go here

Back to ECE438, Fall 2014, Prof. Boutin

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood