(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Category:ECE]]
+
<br>
[[Category:QE]]
+
 
[[Category:CNSIP]]
+
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in Communication Networks Signal and Image processing (CS)  =
[[Category:problem solving]]
+
[[Category:image processing]]
+
  
= [[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]] in Communication Networks Signal and Image processing (CS) =
 
 
[[ECE-QE CS5-2013|Question 5, August 2013]], Part 2  
 
[[ECE-QE CS5-2013|Question 5, August 2013]], Part 2  
  
part1, part 2
+
part1, part 2  
  
 
----
 
----
===Solution 1:===
 
  
a) If the color matching functions <math> f_k(\lambda) <\math> has negative values, it will result in negative values in <math> F_k <\math>. In this case, the color can not be reproduced
+
=== Solution 1: ===
 +
 
 +
a) If the color matching functions <span class="texhtml">''f''<sub>''k''</sub>(λ)</span> has negative values, it will result in negative values in <span class="texhtml">''F''<sub>''k''</sub></span>. In this case, the color can not be reproduced by this device.
 +
 
 +
b) The CIE color matching functions are not always positive. <span class="texhtml">''r''<sub>0</sub>(λ)</span> takes negative values. This is the case because, to match some reference color that is too saturated, colors have to be subtracted from the <span class="texhtml">''R'',''G'',</span> and <span class="texhtml">''B''</span> primaries. This results in negative values in tristimulus values r, g, and b. So the color matching functions at the corresponding wavelength have negative values.
 +
 
 +
c) <br> <math>
 +
\left[ {\begin{array}{*{20}{c}}
 +
F_1\\
 +
F_2\\
 +
F_3
 +
\end{array}} \right]
 +
=
 +
{\begin{array}{*{20}{c}}
 +
\int_{-\infty}^{\infty}
 +
\end{array}}
 +
\left[ {\begin{array}{*{20}{c}}
 +
f_1(\lambda)\\
 +
f_1(\lambda)\\
 +
f_1(\lambda)
 +
\end{array}} \right]
 +
I(\lambda)d\lambda
 +
 
 +
= {\begin{array}{*{20}{c}}
 +
\int_{-\infty}^{\infty}
 +
\end{array}}
 +
M
 +
\left[ {\begin{array}{*{20}{c}}
 +
r_0(\lambda)\\
 +
g_0(\lambda)\\
 +
b_0(\lambda)
 +
\end{array}} \right]
 +
I(\lambda)d\lambda
 +
 
 +
= M
 +
{\begin{array}{*{20}{c}}
 +
\int_{-\infty}^{\infty}
 +
\end{array}}
 +
\left[ {\begin{array}{*{20}{c}}
 +
r_0(\lambda)\\
 +
g_0(\lambda)\\
 +
b_0(\lambda)
 +
\end{array}} \right]
 +
I(\lambda)d\lambda
 +
 
 +
= M
 +
\left[ {\begin{array}{*{20}{c}}
 +
r\\
 +
g\\
 +
b
 +
\end{array}} \right]
 +
</math>
 +
 
 +
So that, <span class="texhtml">[''r'',''g'',''b'']<sup>''t''</sup> = ''M''<sup> − 1</sup>[''F''<sub>1</sub>,''F''<sub>2</sub>,''F''<sub>3</sub>]</span>.
 +
 
 +
d) It exists. CIE XYZ is one example. However, XYZ has problems with its primaries, since, the primary colors are imaginary.
 +
 
 +
=== Related problem ===
 +
 
 +
In a color matching experiment, the three primaries R, G, B are used to match the color of a pure spectral component at wavelength <span class="texhtml">λ</span>. Here the color matching allows for color to be subtracted from the reference color. At each wavelength <span class="texhtml">λ</span>, the matching color is given by
 +
 
 +
<math>
 +
\left[ {\begin{array}{*{20}{c}}
 +
R, G, B
 +
\end{array}} \right]
 +
\left[ {\begin{array}{*{20}{c}}
 +
r(\lambda)\\
 +
g(\lambda)\\
 +
b(\lambda)
 +
\end{array}} \right]
 +
</math>
 +
 
 +
where <math> r_(\lambda) </math>, <math> g_(\lambda)</math>, and <math> b_(\lambda)</math> are normalized to 1.
 +
 
 +
Further define the white point
 +
 
 +
<math> W = 
 +
\left[ {\begin{array}{*{20}{c}}
 +
R, G, B
 +
\end{array}} \right]
 +
\left[ {\begin{array}{*{20}{c}}
 +
r_w\\
 +
g_w\\
 +
b_w
 +
\end{array}} \right]
 +
</math>
 +
 
 +
Let <math>I(\lambda)</math> be the light reflected from a surface.
 +
 
 +
a) Calculate <math>(r_e, g_e, b_e) </math> the tristimulus values for the spectral distribution <math> I(\lambda) </math> using primaries <math> R, G, B </math> and an equal energy white point.
 +
 
 +
b) Calculate <math>(r_c, g_c, b_c) </math> the tristimulus values for the spectral distribution <math> I(\lambda) </math> using primaries <math> R, G, B </math> and  white point <math> (r_w, g_w, b_w) </math>.
 +
[[Category:ECE]] [[Category:QE]] [[Category:CNSIP]] [[Category:Problem_solving]] [[Category:Image_processing]]

Latest revision as of 20:17, 10 November 2014


ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS)

Question 5, August 2013, Part 2

part1, part 2


Solution 1:

a) If the color matching functions fk(λ) has negative values, it will result in negative values in Fk. In this case, the color can not be reproduced by this device.

b) The CIE color matching functions are not always positive. r0(λ) takes negative values. This is the case because, to match some reference color that is too saturated, colors have to be subtracted from the R,G, and B primaries. This results in negative values in tristimulus values r, g, and b. So the color matching functions at the corresponding wavelength have negative values.

c)
$ \left[ {\begin{array}{*{20}{c}} F_1\\ F_2\\ F_3 \end{array}} \right] = {\begin{array}{*{20}{c}} \int_{-\infty}^{\infty} \end{array}} \left[ {\begin{array}{*{20}{c}} f_1(\lambda)\\ f_1(\lambda)\\ f_1(\lambda) \end{array}} \right] I(\lambda)d\lambda = {\begin{array}{*{20}{c}} \int_{-\infty}^{\infty} \end{array}} M \left[ {\begin{array}{*{20}{c}} r_0(\lambda)\\ g_0(\lambda)\\ b_0(\lambda) \end{array}} \right] I(\lambda)d\lambda = M {\begin{array}{*{20}{c}} \int_{-\infty}^{\infty} \end{array}} \left[ {\begin{array}{*{20}{c}} r_0(\lambda)\\ g_0(\lambda)\\ b_0(\lambda) \end{array}} \right] I(\lambda)d\lambda = M \left[ {\begin{array}{*{20}{c}} r\\ g\\ b \end{array}} \right] $

So that, [r,g,b]t = M − 1[F1,F2,F3].

d) It exists. CIE XYZ is one example. However, XYZ has problems with its primaries, since, the primary colors are imaginary.

Related problem

In a color matching experiment, the three primaries R, G, B are used to match the color of a pure spectral component at wavelength λ. Here the color matching allows for color to be subtracted from the reference color. At each wavelength λ, the matching color is given by

$ \left[ {\begin{array}{*{20}{c}} R, G, B \end{array}} \right] \left[ {\begin{array}{*{20}{c}} r(\lambda)\\ g(\lambda)\\ b(\lambda) \end{array}} \right] $

where $ r_(\lambda) $, $ g_(\lambda) $, and $ b_(\lambda) $ are normalized to 1.

Further define the white point

$ W = \left[ {\begin{array}{*{20}{c}} R, G, B \end{array}} \right] \left[ {\begin{array}{*{20}{c}} r_w\\ g_w\\ b_w \end{array}} \right] $

Let $ I(\lambda) $ be the light reflected from a surface.

a) Calculate $ (r_e, g_e, b_e) $ the tristimulus values for the spectral distribution $ I(\lambda) $ using primaries $ R, G, B $ and an equal energy white point.

b) Calculate $ (r_c, g_c, b_c) $ the tristimulus values for the spectral distribution $ I(\lambda) $ using primaries $ R, G, B $ and white point $ (r_w, g_w, b_w) $.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett