(New page: Category:ECE438Fall2014Boutin Category:ECE438 Category:ECE Category:fourier transform Category:homework =Homework 7, ECE438, Fall 2014, [[user:mboutin|Prof. Boutin...)
 
 
Line 25: Line 25:
 
Compute the z-transform of the signal
 
Compute the z-transform of the signal
  
<math>x[n]=  </math>
+
<math>x[n]= 5^n u[n-3] \ </math>
  
== Question 3 ==
+
==Questions 3==
  
 
Compute the z-transform of the signal
 
Compute the z-transform of the signal
  
<math>x[n]=  </math>
+
<math>x[n]= 5^{-|n|} \ </math>
 +
 
 +
== Question 4 ==
 +
 
 +
Compute the z-transform of the signal
 +
 
 +
<math>x[n]= 2^{n}u[n]+ 3^{n}u[-n+1]  \ </math>
  
 
== Question 4 ==
 
== Question 4 ==
Line 37: Line 43:
 
Compute the inverse z-transform of  
 
Compute the inverse z-transform of  
  
<math>X(z)= </math>
+
<math>X(z)=\frac{1}{1+z}, \text{ ROC } |z|<1 </math>
  
  
 
== Question 5 ==
 
== Question 5 ==
  
Compute the inverse z-transform of
+
Compute the inverse z-transform of  
  
<math>X(z)=  </math>
+
<math>X(z)=\frac{1}{1+2 z}, \text{ ROC } |z|> \frac{1}{2} </math>
 +
 
 +
== Question 6 ==
 +
 
 +
Compute the inverse z-transform of
 +
 
 +
<math>X(z)=\frac{1}{1+2 z}, \text{ ROC } |z|< \frac{1}{2} </math>
 +
 
 +
== Question 7 ==
 +
 
 +
Compute the inverse z-transform of
 +
 
 +
<math>X(z)=\frac{1}{(1+ z)(3-z)}, \text{ ROC } |z|<1</math>
 +
 
 +
 
 +
== Question 8 ==
 +
 
 +
Compute the inverse z-transform of
 +
 
 +
<math>X(z)=\frac{1}{(1+ z)(3-z)}, \text{ ROC }  |z|>3</math>
 +
 
 +
== Question 9 ==
 +
 
 +
Compute the inverse z-transform of
  
 +
<math>X(z)=\frac{1}{(1+ z)(3-z)}, \text{ ROC }  1< |z|<3</math>
 +
 
----  
 
----  
 
----
 
----

Latest revision as of 04:50, 22 October 2014


Homework 7, ECE438, Fall 2014, Prof. Boutin

Hard copy due in class, Wednesday October 29, 2014.


Presentation Guidelines

  • Write only on one side of the paper.
  • Use a "clean" sheet of paper (e.g., not torn out of a spiral book).
  • Staple the pages together.
  • Include a cover page.
  • Do not let your dog play with your homework.


Questions 1

Compute the z-transform of the signal

$ x[n]= \left( \frac{1}{2} \right)^n u[-n] $

Questions 2

Compute the z-transform of the signal

$ x[n]= 5^n u[n-3] \ $

Questions 3

Compute the z-transform of the signal

$ x[n]= 5^{-|n|} \ $

Question 4

Compute the z-transform of the signal

$ x[n]= 2^{n}u[n]+ 3^{n}u[-n+1] \ $

Question 4

Compute the inverse z-transform of

$ X(z)=\frac{1}{1+z}, \text{ ROC } |z|<1 $


Question 5

Compute the inverse z-transform of

$ X(z)=\frac{1}{1+2 z}, \text{ ROC } |z|> \frac{1}{2} $

Question 6

Compute the inverse z-transform of

$ X(z)=\frac{1}{1+2 z}, \text{ ROC } |z|< \frac{1}{2} $

Question 7

Compute the inverse z-transform of

$ X(z)=\frac{1}{(1+ z)(3-z)}, \text{ ROC } |z|<1 $


Question 8

Compute the inverse z-transform of

$ X(z)=\frac{1}{(1+ z)(3-z)}, \text{ ROC } |z|>3 $

Question 9

Compute the inverse z-transform of

$ X(z)=\frac{1}{(1+ z)(3-z)}, \text{ ROC } 1< |z|<3 $



Discussion

You may discuss the homework below.

  • write comment/question here
    • answer will go here

Back to ECE438, Fall 2014, Prof. Boutin

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett