(7 intermediate revisions by 3 users not shown)
Line 13: Line 13:
 
Partly based on the [[2014_Fall_ECE_438_Boutin|ECE438 Fall 2014 lecture]] material of [[user:mboutin|Prof. Mireille Boutin]].  
 
Partly based on the [[2014_Fall_ECE_438_Boutin|ECE438 Fall 2014 lecture]] material of [[user:mboutin|Prof. Mireille Boutin]].  
 
</center>
 
</center>
 +
----
 
----
 
----
 
==OUTLINE==
 
==OUTLINE==
Line 47: Line 48:
 
----
 
----
 
==Examples==
 
==Examples==
1)  
+
1)  
 
{|
 
{|
|-
 
 
| align="right" style="padding-right: 1em;" | <br>  
 
| align="right" style="padding-right: 1em;" | <br>  
 
| <math> x(t) \  </math>   
 
| <math> x(t) \  </math>   
Line 62: Line 62:
 
|-
 
|-
 
|}
 
|}
Let's compute FT of a cosine in two different ways:
+
Let's compute FT of a cosine in two different ways:
  
First way is by changing FT pair and changing of variable
+
First way is by changing FT pair and changing of variable
  
Let  
+
Let  
 
  <math>\, \mathcal\omega={2\pi}f</math> ,  <math>\, \mathcal\omega_0={2\pi}f_0</math>
 
  <math>\, \mathcal\omega={2\pi}f</math> ,  <math>\, \mathcal\omega_0={2\pi}f_0</math>
  
Also recall that
+
Also recall that
 
  <math> \displaystyle\delta(\alpha f)=\frac{1}{\alpha}\delta(f)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;for\;\;\alpha>0</math>
 
  <math> \displaystyle\delta(\alpha f)=\frac{1}{\alpha}\delta(f)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;for\;\;\alpha>0</math>
  
Line 80: Line 80:
 
|<math>X(f)= \frac{1}{2}\left[\delta (f - f_0) + \delta (f + f_0)\right] \ </math>  
 
|<math>X(f)= \frac{1}{2}\left[\delta (f - f_0) + \delta (f + f_0)\right] \ </math>  
 
|}
 
|}
Second way is by direct using CTFT formula
+
Second way is by direct using CTFT formula
 
{|  
 
{|  
 
|-  
 
|-  
Line 86: Line 86:
 
|}
 
|}
  
2) Let's find CTFT of a shifted unit impulse:
+
2) Let's find CTFT of a shifted unit impulse:
  <math>\delta (t-t_0)\ </math>
+
 
Keep in mind that:
+
<math>\delta (t-t_0)\ </math>
 +
 
 +
Keep in mind that:
 
{|
 
{|
 
|-
 
|-
Line 96: Line 98:
 
{|
 
{|
 
|-
 
|-
| align="right" style="padding-right: 1em;" |  CT Fourier Transform
+
| align="right" style="padding-right: 1em;" |  From above equation
 
| <math>X(f)=\mathcal{F}(\delta (t-t_0))=\int_{-\infty}^{\infty} \delta (t-t_0) e^{-i2\pi ft} dt</math>
 
| <math>X(f)=\mathcal{F}(\delta (t-t_0))=\int_{-\infty}^{\infty} \delta (t-t_0) e^{-i2\pi ft} dt</math>
 
|}
 
|}
Line 102: Line 104:
 
|-  
 
|-  
 
| align="right" style="padding-right: 1em;" |  Thus we get  
 
| align="right" style="padding-right: 1em;" |  Thus we get  
|  <math>X(f)=e^{-i2\pi ft} = e^{-i\omega ft} </math>
+
|  <math>X(f)=e^{-i2\pi ft_0} = e^{-i\omega t_0} </math>
 
|}
 
|}
 
----
 
----
 
==Conclusion==
 
==Conclusion==
Observe that the expressions for the FT are different because we used change of variables.  
+
Observe that the expressions for the FT are different because we used change of variables.  
Also notice that one can transform one expression into  the other using the scaling property of the Dirac delta
+
 
 +
Also notice that one can transform one expression into  the other using the scaling property of the Dirac delta
 
----
 
----
 
==References==
 
==References==
 
[1].Mireille Boutin, "ECE438 Digital Signal Processing with Applications," Purdue University August 26,2009
 
[1].Mireille Boutin, "ECE438 Digital Signal Processing with Applications," Purdue University August 26,2009
 
[[Main_Page| link to a Rhea page]]
 
 
----
 
----
Post your slecture material here. Guidelines:
 
*If you wish to post your slecture anonymously, please contact your instructor to get an anonymous login. Otherwise, you will be identifiable through your Purdue CAREER account, and thus you will NOT be anonymous.
 
*Rephrase the material in your own way, in your own words, based on Prof. Boutin's lecture material.
 
*Feel free to add your own examples or your own material.
 
*Focus on the clarity of your explanation. It must be clear, easily understandable.
 
*Type text using wikitext markup language. Do not post a pdf. Do not upload a word file.
 
*Type all equations using latex code between <nowiki> <math> </math> </nowiki> tags.
 
*You may include graphs, pictures, animated graphics, etc.
 
*You may include links to other [https://www.projectrhea.org/learning/about_Rhea.php Project Rhea] pages.
 
 
IMPORTANT: DO NOT PLAGIARIZE. If you use other material than Prof. Boutin's lecture material, you must cite your sources. Do not copy text word for word from another source; rephrase everything using your own words. Similarly for graphs, illustrations, pictures, etc. Make your own! Do not copy them from other sources.
 
 
----
 
----
(create a question page and put a link below)
 
 
==[[Slecture_Fourier_transform_w_f_ECE438_review|Questions and comments]]==
 
==[[Slecture_Fourier_transform_w_f_ECE438_review|Questions and comments]]==
  
 
If you have any questions, comments, etc. please post them on [[Slecture_Fourier_transform_w_f_ECE438_review|this page]].
 
If you have any questions, comments, etc. please post them on [[Slecture_Fourier_transform_w_f_ECE438_review|this page]].
 
----
 
----
[[2014_Fall_ECE_438_Boutin|Back to ECE438, Fall 2014]]
+
[[2014_Fall_ECE_438_Boutin_digital_signal_processing_slectures|Back to ECE438 slectures, Fall 2014]]

Latest revision as of 17:51, 16 March 2015


Fourier transform as a function of frequency ω versus Fourier transform as a function of frequency f

A slecture by ECE student Dauren Nurmaganbetov

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.



OUTLINE

  1. Introduction
  2. Theory
  3. Examples
  4. Conclusion
  5. References

Introduction

In my slecture I will explain Fourier transform as a function of frequency ω versus Fourier transform as a function of frequency f (in hertz).


Theory

  • Review of formulas used in ECE 301
CT Fourier Transform $ \mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt $
Inverse Fourier Transform $ \, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{i\omega t} d \omega\, $
  • Review of formulas used in ECE 438.
CT Fourier Transform $ X(f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt $
Inverse Fourier Transform $ \, x(t)=\mathcal{F}^{-1}(X(f))=\int_{-\infty}^{\infty}X(f)e^{i2\pi ft} df \, $

Examples

1)


$ x(t) \ $ $ \longrightarrow $ $ \mathcal{X}(\omega) $
$ \cos(\omega_0 t) \ $ $ \pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] \ $

Let's compute FT of a cosine in two different ways:

First way is by changing FT pair and changing of variable

Let

$ \, \mathcal\omega={2\pi}f $ ,  $ \, \mathcal\omega_0={2\pi}f_0 $

Also recall that

$  \displaystyle\delta(\alpha f)=\frac{1}{\alpha}\delta(f)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;for\;\;\alpha>0 $
$ X(f)=\mathcal{X}({2\pi}f)=\pi \left[\delta ({2\pi}f - {2\pi}f_0) + \delta ( {2\pi}f+ {2\pi}f_0)\right] \ $
$ X(f)= \pi \left[\frac{1}{2\pi }\delta (f - f_0) + \frac{1}{2\pi }\delta (f + f_0)\right] \ $
$ X(f)= \frac{1}{2}\left[\delta (f - f_0) + \delta (f + f_0)\right] \ $

Second way is by direct using CTFT formula

$ X(f)= \frac{1}{2} \left[\delta (f - \frac{\omega_0}{2\pi}) + \delta (f + \frac{\omega_0}{2\pi})\right] \ $

2) Let's find CTFT of a shifted unit impulse:

$ \delta (t-t_0)\ $

Keep in mind that:

CT Fourier Transform $ X(f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt $
From above equation $ X(f)=\mathcal{F}(\delta (t-t_0))=\int_{-\infty}^{\infty} \delta (t-t_0) e^{-i2\pi ft} dt $
Thus we get $ X(f)=e^{-i2\pi ft_0} = e^{-i\omega t_0} $

Conclusion

Observe that the expressions for the FT are different because we used change of variables.

Also notice that one can transform one expression into the other using the scaling property of the Dirac delta


References

[1].Mireille Boutin, "ECE438 Digital Signal Processing with Applications," Purdue University August 26,2009



Questions and comments

If you have any questions, comments, etc. please post them on this page.


Back to ECE438 slectures, Fall 2014

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics