(Removing all content from page)
 
(49 intermediate revisions by the same user not shown)
Line 1: Line 1:
Let define a n-by-n matrix A and a non-zero vector <math>\vec{x}\in\mathbb{R}^{n}</math>. If there exists a scalar value <math>\lambda</math> which satisfies the vector equation <math>A\vec{x}=\lambda\vec{x}</math>, we define <math>\lambda</math> as an eigenvalue of the matrix A, and the corresponding non-zero vector <math>\vec{x}</math> is called an eigenvector of the matrix A. To determine eigenvalues and eigenvectors a characteristic equation
 
  
<center><math>D(\lambda)=det\left(A-\lambda I\right)</math></center>
 
 
is used. Here is an example of determining eigenvectors and eigenvalues where the matrix A is given by
 
 
<center><math>A=\left[\begin{matrix}-5 & 2\\
 
2 & -2
 
\end{matrix}\right]</math></center>.
 
 
Then the characteristic equation
 
 
<center><math>D(\lambda)=\left(-5-\lambda\right)\left(-2-\lambda\right)-4=\lambda^{2}+7\lambda+6=0.</math></center>
 
 
By solving the quadratic equation for <math>\lambda</math>, we will have two eigenvalues <math>\lambda_{1}=-1</math> and <math>\lambda_{2}=-6</math>. By substituting <math>\lambda's</math> into Eq [eq:1]
 
 
<math>
 
\[
 
\left(A-\lambda_{1}I\right)\vec{x}=\left[\begin{matrix}-5-\lambda_{1} & 2\\
 
2 & -2-\lambda
 
\end{matrix}\right]\left[\begin{matrix}x_{1}\\
 
x_{2}
 
\end{matrix}\right]=0
 
\]
 
</math>
 

Latest revision as of 11:46, 13 May 2014

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman