(Definition)
(Properties)
 
(6 intermediate revisions by the same user not shown)
Line 3: Line 3:
  
 
== Definition==
 
== Definition==
 +
<pre>
 +
    Complex number is the combination of real number and imaginary number. It's basic form is a+bi, Where
 +
a is the real part and bi is the imaginary part.
  
     Complex number is the combination of real number and imaginary number. It's basic form is a+bi,
+
     i is the unit for imaginary number. In a complex coordinate, a+bi is point(a,b). The distance between
Where a is the real part and bi is the imaginary part.  
+
this point and the origin is the square root of (a^2 + b^2).
  
     i is the unit for imaginary number. In a complex coordinate, a+bi is point(a,b). The distance
+
     In the form a+bi, when b=0, the complex number belongs to real number; when a=0, the complex number
between this point and the origin is <math>sqt(a^2+b^2)</math>.
+
belongs to imaginary number; when they both are not zero, it belongs to complex region.
  
     In the form a+bi, when b=0, the complex number belongs to real number; when a=0, the complex
+
     The triangular form of a complex number is Z=r(cosx + isinx). r is the distance between point Z and
number belongs to imaginary number; when they both are not zero, it belongs to complex region.
+
the origin on a complex coordiante. rcosx is real part and irsinx is the imaginary part.
 +
</pre>
  
    The triangular form of a complex number is Z=r(cosx + isinx). r is the distance between point
+
 
Z and the origin on a complex coordiante. rcosx is real part and irsinx is the imaginary part.
+
== Properties ==
 +
:* Addition: <math>\,(a + bi) + (c + di) = (a + c) + (b + d)i</math>
 +
:* Subtraction: <math>\,(a + bi) - (c + di) = (a - c) + (b - d)i</math>
 +
:* Multiplication: <math>\,(a + bi) (c + di) = ac + bci + adi + bd i^2 = (ac - bd) + (bc + ad)i</math>
 +
:* Division: <math>\,\frac{(a + bi)}{(c + di)} = \left({ac + bd \over c^2 + d^2}\right) + \left( {bc - ad \over c^2 + d^2} \right)i\,,</math>
 +
where ''c'' and ''d'' are not both zero.
 +
 
 +
**Source for wikipedia: [[http://en.wikipedia.org/w/index.php?title=Complex_number&action=edit&section=4]]

Latest revision as of 16:26, 2 September 2008

Review of Complex Number

Definition

    Complex number is the combination of real number and imaginary number. It's basic form is a+bi, Where
a is the real part and bi is the imaginary part. 

    i is the unit for imaginary number. In a complex coordinate, a+bi is point(a,b). The distance between 
this point and the origin is the square root of (a^2 + b^2).

    In the form a+bi, when b=0, the complex number belongs to real number; when a=0, the complex number 
belongs to imaginary number; when they both are not zero, it belongs to complex region.

    The triangular form of a complex number is Z=r(cosx + isinx). r is the distance between point Z and 
the origin on a complex coordiante. rcosx is real part and irsinx is the imaginary part.


Properties

  • Addition: $ \,(a + bi) + (c + di) = (a + c) + (b + d)i $
  • Subtraction: $ \,(a + bi) - (c + di) = (a - c) + (b - d)i $
  • Multiplication: $ \,(a + bi) (c + di) = ac + bci + adi + bd i^2 = (ac - bd) + (bc + ad)i $
  • Division: $ \,\frac{(a + bi)}{(c + di)} = \left({ac + bd \over c^2 + d^2}\right) + \left( {bc - ad \over c^2 + d^2} \right)i\,, $

where c and d are not both zero.

    • Source for wikipedia: [[1]]

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang