(New page: Category:Set Theory Category:Math == Theorem == Let <math>\{E_{\alpha}\}</math> be a (finite or infinite) collection of sets <math>E_{\alpha}</math>. Then, <br/> <center><math>(...) |
|||
Line 34: | Line 34: | ||
<center><math>(\bigcup_{\alpha}E_{\alpha})^C = \bigcap_{\alpha}(E_{\alpha}^C)</math></center> | <center><math>(\bigcup_{\alpha}E_{\alpha})^C = \bigcap_{\alpha}(E_{\alpha}^C)</math></center> | ||
<math>\blacksquare</math> | <math>\blacksquare</math> | ||
+ | |||
+ | |||
+ | ---- | ||
+ | |||
+ | == References == | ||
+ | |||
+ | * W. Rudin, "Basic Topology" in "Principles of Mathematical Analysis", 3rd Edition, McGraw-Hill Inc. ch 2, pp 33. | ||
---- | ---- | ||
[[Proofs_mhossain|Back to list of all proofs]] | [[Proofs_mhossain|Back to list of all proofs]] |
Latest revision as of 10:47, 6 October 2013
Theorem
Let $ \{E_{\alpha}\} $ be a (finite or infinite) collection of sets $ E_{\alpha} $. Then,
Proof
Conversely,
Therefore,
$ \blacksquare $
References
- W. Rudin, "Basic Topology" in "Principles of Mathematical Analysis", 3rd Edition, McGraw-Hill Inc. ch 2, pp 33.