Line 8: Line 8:
 
Union  is commutative <br/>
 
Union  is commutative <br/>
 
<math>A\cup B = B\cup A</math> <br/>
 
<math>A\cup B = B\cup A</math> <br/>
where <math>A</math> and <math>B</math> are events in a probability space.
+
where <math>A</math> and <math>B</math> are sets.
  
  

Latest revision as of 10:21, 1 October 2013


Theorem

Union is commutative
$ A\cup B = B\cup A $
where $ A $ and $ B $ are sets.



Proof

$ \begin{align} A\cup B &\triangleq \{x\in\mathcal S:\;x\in A\;\mbox{or}\; x\in B\}\\ &= \{x\in\mathcal S:\;x\in B\;\mbox{or}\; x\in A\}\\ &= B\cup A\\ \blacksquare \end{align} $


Back to list of all proofs

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn