(10 intermediate revisions by 5 users not shown)
Line 5: Line 5:
 
[[Category:z-transform]]
 
[[Category:z-transform]]
  
= [[:Category:Problem_solving|Practice Problem]] on Z-transform computation =
+
<center><font size= 4>
 +
'''[[Digital_signal_processing_practice_problems_list|Practice Question on "Digital Signal Processing"]]'''
 +
</font size>
 +
 
 +
Topic: Computing a z-transform
 +
 
 +
</center>
 +
----
 +
==Question==
 
Compute the z-transform (including the ROC) of the following DT signal:
 
Compute the z-transform (including the ROC) of the following DT signal:
  
Line 39: Line 47:
  
 
<math>X(z) = (\frac{3}{3-z}) </math> with ROC, |z| < 3  
 
<math>X(z) = (\frac{3}{3-z}) </math> with ROC, |z| < 3  
 +
 +
:<span style="color:blue"> Grader's comment: Obtain the Fourier transform of the signal </span>
  
 
=== Answer 2===
 
=== Answer 2===
Line 58: Line 68:
  
 
<math> \mathcal{F}(x[n]r^{-n}) = X(3e^{jw}) = \mathcal{X}(w) = \frac{\frac{3}{3e^{jw}}}{1-e^{jw}} </math>
 
<math> \mathcal{F}(x[n]r^{-n}) = X(3e^{jw}) = \mathcal{X}(w) = \frac{\frac{3}{3e^{jw}}}{1-e^{jw}} </math>
 +
 +
:<span style="color:blue"> Grader's comment: The Fourier Transform calculated is wrong </span>
  
 
===Answer 3===
 
===Answer 3===
Line 71: Line 83:
  
 
<math>X(z) = (\frac{3}{z})^3 \frac{1}{1-\frac{z}{3}} </math> if |z| < 3
 
<math>X(z) = (\frac{3}{z})^3 \frac{1}{1-\frac{z}{3}} </math> if |z| < 3
 +
 +
:<span style="color:blue"> Grader's comment: Obtain the Fourier transform of the signal </span>
  
 
===Answer 4===
 
===Answer 4===
Line 99: Line 113:
 
for all, this signal can't have DTFT.
 
for all, this signal can't have DTFT.
  
 +
:<span style="color:blue"> Grader's comment: You copied the question wrongly </span>
  
 
===Answer 5===
 
===Answer 5===
Line 119: Line 134:
 
<math>X(z) = (\frac{27 z^{-3}}{1+(\frac{z}{3})}) </math>  
 
<math>X(z) = (\frac{27 z^{-3}}{1+(\frac{z}{3})}) </math>  
  
By geometric series formula,  
+
By simplification,  
  
<math>X(z) = (\frac{27^{-3}}{1+(\frac{z}{3})}) </math>
+
<math>X(z) = (\frac{-81 z^{-4}}{1-3 z^{-1}}) </math>, ROC |z| < 3.
  
X(z) = diverges, else
+
Since the ROC contains the unit circle, there exists a Fourier transform representation for the signal.
 +
Therefore, to find the signal`s Fourier representation, we just need to replace z be <math>e^{j w}</math>
  
 
So,  
 
So,  
  
<math>X(z) = (\frac{3}{3-z}) </math> with ROC, |z| < 3  
+
<math>X(\omega) = -(\frac{81 e^{-j 4 w}}{1-3 e^{-j w}}) </math> 
 +
 
 +
:<span style="color:blue"> Grader's comment: Correct Answer </span>
 +
 
 +
----
 +
Answer 6
 +
 
 +
<math>x[n] = 3^n u[-n+3]</math>
 +
 
 +
<math>X(z) = \sum_{n = -\infty}^{\infty} x[n] z^{-n}</math>
 +
 
 +
<math>= \sum_{n=-\infty}^{\infty} 3^n u[-n+3] z^{-n}</math>
 +
 
 +
let k = -n+3
 +
=> n = -k+3
 +
 
 +
<math>X(z) = \sum_{k=0}^{\infty} 3^{-k+3} z^{k-3}</math>
 +
 
 +
<math>= \frac{3^3}{z^3} \sum_{k=0}^{\infty} {\frac{z}{3}}^k</math>
 +
 
 +
<math>= \frac{3^3}{z^3} \frac{1}{1-\frac{z}{3}}, \left |\frac{z}{3} \right | < 1</math>
 +
 
 +
<math>X(z) = \frac{3^3}{z^3} \frac{1}{1-\frac{z}{3}}, \left | z \right | < 3</math>
 +
 
 +
diverges , else
 +
 
 +
<math>F{{x[n]r^{-n}}} = X(3e^{jw}) = X(\omega) = \frac{e^{-j \omega 3}}{1-e^{jw}}</math>
 +
 
 +
:<span style="color:blue"> Grader's comment: Replace Z by e^jw </span>
 +
 
 +
----answer 7
 +
 
 +
Xiang Zhang
 +
 
 +
In order to get Z-transform, we can first apply the basic transformation equation.
 +
 
 +
<math> X_(z) = \sum_{n = -\infty}^{ \infty} x[n] z^{- n} </math>
 +
 
 +
Substitute in x[n], we can get that,
 +
 
 +
<math> X_(z) = \sum_{n = -\infty}^{ \infty} 3^n u[-n+3] z^{- n} </math>
 +
 
 +
let's use variable substitution by k = -n+3 hence n = 3-k. It can make our life beautiful and easier!
 +
 
 +
<math> X_(z) = \sum_{n = +\infty}^{- \infty} 3^{3-k} u[k] z^{k - 3} </math>
 +
 
 +
 
 +
Now we can use u[k] to change the lower boundary to
 +
 
 +
<math> X_(z) = \sum_{n = 0 }^{ \infty} 3^{3-k} z^{k-3} </math>
 +
 
 +
We can take out some terms from Z.
 +
 
 +
<math> X_(z) =  \frac{27}{ z^3} \sum_{n = 0 }^{ \infty} {(\frac{z}{3})}^{k} </math>
 +
 
 +
Now we can apply geometric series formula into the transform by letting q = z/3
 +
 
 +
<math>  \frac{1}{1-q} = \sum_{ n = 0 }^{+ \infty} q^k for  |q| < 1  </math>
 +
 
 +
<math> X_(z) = \frac{27}{ z^3} (\frac{1}{1-\frac{z}{3}}) for |z| < 3</math>
 +
 
 +
Hence, the final x(z) is
 +
 
 +
 
 +
<math>
 +
X(z) = \left\{
 +
  \begin{array}{l l}
 +
    \frac{27}{ z^3} (\frac{1}{1-\frac{z}{3}}) & \quad when \quad  |z| < 3\\
 +
    diverges & \quad \text{else}
 +
  \end{array} \right.
 +
</math>
 +
 
 +
:<span style="color:blue"> Grader's comment: Obtain the Fourier transform of the signal </span>
  
  
 
----
 
----
 
[[2013_Fall_ECE_438_Boutin|Back to ECE438 Fall 2013 Prof. Boutin]]
 
[[2013_Fall_ECE_438_Boutin|Back to ECE438 Fall 2013 Prof. Boutin]]

Latest revision as of 11:53, 26 November 2013


Practice Question on "Digital Signal Processing"

Topic: Computing a z-transform


Question

Compute the z-transform (including the ROC) of the following DT signal:

$ x[n]=3^n u[-n+3] \ $

Then use your answer to obtain the Fourier transform of the signal. (Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

x[n] = 3nu[-n + 3]

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

$ X(z) = \sum_{n=-\infty}^{+\infty} 3^n u[-n+3] z^{-n} $

Let k = -n+3, n = -k+3

$ X(z) = \sum_{k=0}^{+\infty} (\frac{3}{z})^{-k+3} $

$ X(z) = (\frac{3}{z})^{3} \sum_{k=0}^{+\infty} (\frac{z}{3})^{k} $

$ X(z) = (\frac{27}{z^3}) \sum_{k=0}^{+\infty} (\frac{z}{3})^{k} $

By geometric series formula,

$ X(z) = (\frac{27}{z^3}) (\frac{1}{1-(\frac{z}{3})}) $ ,for |z| < 3

X(z) = diverges, else

So,

$ X(z) = (\frac{3}{3-z}) $ with ROC, |z| < 3

Grader's comment: Obtain the Fourier transform of the signal

Answer 2

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} = \sum_{n=-\infty}^{+\infty} 3^n u[-n+3] z^{-n} $

Let k=-n+3, n=3-k, then

$ X(z) = \sum_{k=-\infty}^{+\infty} (3)^{n-k}u[k](z)^{-3+k} $

$ X(z) = (\frac{3}{z})^{3}\sum_{k=0}^{+\infty} (\frac{z}{3})^{k} $

$ X(z) = \left\{ \begin{array}{l l} (\frac{3}{z})^3 \frac{1}{1-\frac{z}{3}} &, if \quad |z| < 3\\ \text{diverges} &, \quad \text{otherwise} \end{array} \right. $

$ \mathcal{F}(x[n]r^{-n}) = X(3e^{jw}) = \mathcal{X}(w) = \frac{\frac{3}{3e^{jw}}}{1-e^{jw}} $

Grader's comment: The Fourier Transform calculated is wrong

Answer 3

Kyungjun Kim

$ X(z) = \sum_{n=-\infty}^{+\infty} 3^n u[-n+3] z^{-n} $

Let l=-n+3, n=3-l, then

$ X(z) = \sum_{l=-\infty}^{+\infty} (3)^{n-l}u[k]z^{-3+l} $

$ X(z) = (\frac{3}{z})^{3}\sum_{l=0}^{+\infty} (\frac{z}{3})^{l} $

$ X(z) = (\frac{3}{z})^3 \frac{1}{1-\frac{z}{3}} $ if |z| < 3

Grader's comment: Obtain the Fourier transform of the signal

Answer 4

$ X[Z] = \sum_{n=-\infty}^{+\infty} 3^{n}u[n+3] Z^{-n} $

$ X[Z] = \sum_{n=-3}^{+\infty} 3^{n}Z^{-n} $

$ X[Z] = \sum_{n=-3}^{+\infty} (\frac{3}{z})^{n} $

$ X[Z] = \sum_{n=-3}^{n=-1} (\frac{3}{z})^{n} + \sum_{n=0}^{+\infty} (\frac{3}{z})^{n} $

$ for \sum_{n=-3}^{n=-1} (\frac{3}{z})^{n}, no effect, because this converges everywhere on plane. $

$ for \sum_{n=0}^{+\infty} (\frac{3}{z})^{n}) = \frac{1}{1-\frac{3}{z}}, if |\frac{3}{z}|<1, |z|>3 $

or diverges else.

for the DTFT for this signal,

$ for \sum_{n=0}^{+\infty} (\frac{3}{z})^{n} = \frac{1}{1-\frac{3}{z}}, |z|>3, so it is impossible to have e^{j\omega}, because ROC is bigger at 3 $

$ for \sum_{n=-3}^{n=-1} (\frac{3}{z})^{n}, the DTFT is follow: $

$ \sum_{n=-3}^{n=-1} (\frac{3}{e^{j\omega}})^{n} $

for all, this signal can't have DTFT.

Grader's comment: You copied the question wrongly

Answer 5

x[n] = 3nu[-n + 3]

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

$ X(z) = \sum_{n=-\infty}^{+\infty} 3^n u[-n+3] z^{-n} $

$ X(z) = \sum_{-\infty}^{3} 3^n z^{-n} $

Let k = -n,

$ X(z) = \sum_{k=-3}^{+\infty} 3^{-k} z^k $

$ X(z) = \sum_{k=-3}^{+\infty} (\frac{z}{3})^{k} $

For |z| < 3, we have, by geometric series, that:

$ X(z) = (\frac{27 z^{-3}}{1+(\frac{z}{3})}) $

By simplification,

$ X(z) = (\frac{-81 z^{-4}}{1-3 z^{-1}}) $, ROC |z| < 3.

Since the ROC contains the unit circle, there exists a Fourier transform representation for the signal. Therefore, to find the signal`s Fourier representation, we just need to replace z be $ e^{j w} $

So,

$ X(\omega) = -(\frac{81 e^{-j 4 w}}{1-3 e^{-j w}}) $

Grader's comment: Correct Answer

Answer 6

$ x[n] = 3^n u[-n+3] $

$ X(z) = \sum_{n = -\infty}^{\infty} x[n] z^{-n} $

$ = \sum_{n=-\infty}^{\infty} 3^n u[-n+3] z^{-n} $

let k = -n+3 => n = -k+3

$ X(z) = \sum_{k=0}^{\infty} 3^{-k+3} z^{k-3} $

$ = \frac{3^3}{z^3} \sum_{k=0}^{\infty} {\frac{z}{3}}^k $

$ = \frac{3^3}{z^3} \frac{1}{1-\frac{z}{3}}, \left |\frac{z}{3} \right | < 1 $

$ X(z) = \frac{3^3}{z^3} \frac{1}{1-\frac{z}{3}}, \left | z \right | < 3 $

diverges , else

$ F{{x[n]r^{-n}}} = X(3e^{jw}) = X(\omega) = \frac{e^{-j \omega 3}}{1-e^{jw}} $

Grader's comment: Replace Z by e^jw

answer 7

Xiang Zhang

In order to get Z-transform, we can first apply the basic transformation equation.

$ X_(z) = \sum_{n = -\infty}^{ \infty} x[n] z^{- n} $

Substitute in x[n], we can get that,

$ X_(z) = \sum_{n = -\infty}^{ \infty} 3^n u[-n+3] z^{- n} $

let's use variable substitution by k = -n+3 hence n = 3-k. It can make our life beautiful and easier!

$ X_(z) = \sum_{n = +\infty}^{- \infty} 3^{3-k} u[k] z^{k - 3} $


Now we can use u[k] to change the lower boundary to

$ X_(z) = \sum_{n = 0 }^{ \infty} 3^{3-k} z^{k-3} $

We can take out some terms from Z.

$ X_(z) = \frac{27}{ z^3} \sum_{n = 0 }^{ \infty} {(\frac{z}{3})}^{k} $

Now we can apply geometric series formula into the transform by letting q = z/3

$ \frac{1}{1-q} = \sum_{ n = 0 }^{+ \infty} q^k for |q| < 1 $

$ X_(z) = \frac{27}{ z^3} (\frac{1}{1-\frac{z}{3}}) for |z| < 3 $

Hence, the final x(z) is


$ X(z) = \left\{ \begin{array}{l l} \frac{27}{ z^3} (\frac{1}{1-\frac{z}{3}}) & \quad when \quad |z| < 3\\ diverges & \quad \text{else} \end{array} \right. $

Grader's comment: Obtain the Fourier transform of the signal



Back to ECE438 Fall 2013 Prof. Boutin

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood