Line 21: Line 21:
  
 
\\& =2cos\left (\frac{\pi}{4}\right ) t
 
\\& =2cos\left (\frac{\pi}{4}\right ) t
 
+
\end{align}
 +
</math>
 
----
 
----
 
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]
 
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:44, 16 September 2013

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform


Specify a Fourier transform $ X(w) $

$ X(w)=2\pi \delta\left ( w- \frac{\pi}{4}\right )+2\pi \delta\left ( w+ \frac{\pi}{4}\right ) $

Inverse Fourier transform of $ X(w) $

$ \begin{align} x(t)&=\frac{1}{2\pi}\int_{-\infty}^{\infty}X( \omega)e^{j\omega t}d\omega \\& =\frac{1}{2\pi}\int_{-\infty}^{\infty}2\pi \delta\left ( w- \frac{\pi}{4}\right )e^{j\omega t}d\omega+ \frac{1}{2\pi}\int_{-\infty}^{\infty}2\pi \delta\left ( w+ \frac{\pi}{4}\right )e^{j\omega t}d\omega \\& =\int_{-\infty}^{\infty}\delta\left ( w- \frac{\pi}{4}\right )e^{j\omega t}d\omega+ \int_{-\infty}^{\infty}\delta\left ( w+ \frac{\pi}{4}\right )e^{j\omega t}d\omega \\& =e^{-j\frac{\pi}{4}t}+e^{j\frac{\pi}{4}t} \\& =2cos\left (\frac{\pi}{4}\right ) t \end{align} $

Back to Practice Problems on CT Fourier transform



\end{align}</math>

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn