(One intermediate revision by the same user not shown)
Line 22: Line 22:
 
----
 
----
 
==Question==
 
==Question==
'''Part 1. '''
+
'''1'''
 +
 
 +
Let <math class="inline">\mathbf{U}_{n}</math>  be a sequence of independent, identically distributed zero-mean, unit-variance Gaussian random variables. The sequence <math class="inline">\mathbf{X}_{n}</math> , <math class="inline">n\geq1</math> , is given by <math class="inline">\mathbf{X}_{n}=\frac{1}{2}\mathbf{U}_{n}+\left(\frac{1}{2}\right)^{2}\mathbf{U}_{n-1}+\cdots+\left(\frac{1}{2}\right)^{n}\mathbf{U}_{1}.</math>
 +
 
 +
'''(a) (15 points)'''
 +
 
 +
Find the mean and variance of <math class="inline">\mathbf{X}_{n}</math> .
 +
 
 +
'''(b) (15 points)'''
 +
 
 +
Find the characteristic function of <math class="inline">\mathbf{X}_{n}</math> .
 +
 
 +
'''(c) (10 points)'''
 +
 
 +
Does the sequence <math class="inline">\mathbf{X}_{n}</math>  converge in distribution? A simple yes or no answer is not sufficient. You must justify your answer.
  
Write Statement here
 
  
 
:'''Click [[ECE_PhD_QE_CNSIP_2006_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2006_Problem1.1|answers and discussions]]'''
 
:'''Click [[ECE_PhD_QE_CNSIP_2006_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2006_Problem1.1|answers and discussions]]'''
 
----
 
----
'''Part 2.'''
+
'''2'''
 +
 
 +
Let <math class="inline">\Phi</math>  be the standard normal distribution, i.e., the distribution function of a zero-mean, unit-variance Gaussian random variable. Let <math class="inline">\mathbf{X}</math>  be a normal random variable with mean <math class="inline">\mu</math>  and variance 1 . We want to find <math class="inline">E\left[\Phi\left(\mathbf{X}\right)\right]</math> .
 +
 
 +
'''(a) (10 points)'''
 +
 
 +
First show that <math class="inline">E\left[\Phi\left(\mathbf{X}\right)\right]=P\left(\mathbf{Z}\leq\mathbf{X}\right)</math> , where <math class="inline">\mathbf{Z}</math>  is a standard normal random variable independent of <math class="inline">\mathbf{X}</math> . Hint: Use an intermediate random variable <math class="inline">\mathbf{I}</math>  defined as
 +
 
 +
 
 +
'''(b) (10 points)'''
 +
 
 +
Now use the result from Part (a) to show that <math class="inline">E\left[\Phi\left(\mathbf{X}\right)\right]=\Phi\left(\frac{\mu}{\sqrt{2}}\right)</math> .
  
Write question here.
 
  
 
:'''Click [[ECE_PhD_QE_CNSIP_2006_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_2006_Problem1.2|answers and discussions]]'''
 
:'''Click [[ECE_PhD_QE_CNSIP_2006_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_2006_Problem1.2|answers and discussions]]'''
 
----
 
----
'''Part 3.'''
+
'''3 (15 points)'''
 +
 
 +
Let <math class="inline">\mathbf{Y}(t)</math>  be the output of linear system with impulse response <math class="inline">h\left(t\right)</math>  and input <math class="inline">\mathbf{X}\left(t\right)+\mathbf{N}\left(t\right)</math> , where <math class="inline">\mathbf{X}\left(t\right)</math>  and <math class="inline">\mathbf{N}\left(t\right)</math>  are jointly wide-sense stationary independent random processes. If <math class="inline">\mathbf{Z}\left(t\right)=\mathbf{X}\left(t\right)-\mathbf{Y}\left(t\right)</math> , find the power spectral density <math class="inline">S_{\mathbf{Z}}\left(\omega\right)</math>  in terms of <math class="inline">S_{\mathbf{X}}\left(\omega\right) , S_{\mathbf{N}}\left(\omega\right) , m_{\mathbf{X}}=E\left[\mathbf{X}\right]</math> , and <math class="inline">m_{\mathbf{Y}}=E\left[\mathbf{Y}\right]</math> .
  
Write question here.
 
  
 
:'''Click [[ECE_PhD_QE_CNSIP_2006_Problem1.3|here]] to view student [[ECE_PhD_QE_CNSIP_2006_Problem1.3|answers and discussions]]'''
 
:'''Click [[ECE_PhD_QE_CNSIP_2006_Problem1.3|here]] to view student [[ECE_PhD_QE_CNSIP_2006_Problem1.3|answers and discussions]]'''
 
----
 
----
'''Part 4.'''
+
'''4'''
 +
 
 +
Suppose customer orders arrive according to an i.i.d.  Bernoulli random process <math class="inline">\mathbf{X}_{n}</math>  with parameter <math class="inline">p</math> . Thus, an order arrives at time index <math class="inline">n</math>  (i.e., <math class="inline">\mathbf{X}_{n}=1</math> ) with probability <math class="inline">p</math> ; if an order does not arrive at time index <math class="inline">n</math> , then <math class="inline">\mathbf{X}_{n}=0</math> . When an order arrives, its size is an exponential random variable with parameter <math class="inline">\lambda</math> . Let <math class="inline">\mathbf{S}_{n}</math>  be the total size of all orders up to time <math class="inline">n</math> .
 +
 
 +
'''(a) (20 points)'''
 +
 
 +
Find the mean and autocorrelation function of <math class="inline">\mathbf{S}_{n}</math> .
 +
 
 +
'''(b) (5 points)'''
 +
 
 +
Is <math class="inline">\mathbf{S}_{n}</math>  a stationary random process? Explain.
  
Write question here.
 
  
 
:'''Click [[ECE_PhD_QE_CNSIP_2006_Problem1.4|here]] to view student [[ECE_PhD_QE_CNSIP_2006_Problem1.4|answers and discussions]]'''
 
:'''Click [[ECE_PhD_QE_CNSIP_2006_Problem1.4|here]] to view student [[ECE_PhD_QE_CNSIP_2006_Problem1.4|answers and discussions]]'''
 
----
 
----
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 09:35, 10 March 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2006



Question

1

Let $ \mathbf{U}_{n} $ be a sequence of independent, identically distributed zero-mean, unit-variance Gaussian random variables. The sequence $ \mathbf{X}_{n} $ , $ n\geq1 $ , is given by $ \mathbf{X}_{n}=\frac{1}{2}\mathbf{U}_{n}+\left(\frac{1}{2}\right)^{2}\mathbf{U}_{n-1}+\cdots+\left(\frac{1}{2}\right)^{n}\mathbf{U}_{1}. $

(a) (15 points)

Find the mean and variance of $ \mathbf{X}_{n} $ .

(b) (15 points)

Find the characteristic function of $ \mathbf{X}_{n} $ .

(c) (10 points)

Does the sequence $ \mathbf{X}_{n} $ converge in distribution? A simple yes or no answer is not sufficient. You must justify your answer.


Click here to view student answers and discussions

2

Let $ \Phi $ be the standard normal distribution, i.e., the distribution function of a zero-mean, unit-variance Gaussian random variable. Let $ \mathbf{X} $ be a normal random variable with mean $ \mu $ and variance 1 . We want to find $ E\left[\Phi\left(\mathbf{X}\right)\right] $ .

(a) (10 points)

First show that $ E\left[\Phi\left(\mathbf{X}\right)\right]=P\left(\mathbf{Z}\leq\mathbf{X}\right) $ , where $ \mathbf{Z} $ is a standard normal random variable independent of $ \mathbf{X} $ . Hint: Use an intermediate random variable $ \mathbf{I} $ defined as


(b) (10 points)

Now use the result from Part (a) to show that $ E\left[\Phi\left(\mathbf{X}\right)\right]=\Phi\left(\frac{\mu}{\sqrt{2}}\right) $ .


Click here to view student answers and discussions

3 (15 points)

Let $ \mathbf{Y}(t) $ be the output of linear system with impulse response $ h\left(t\right) $ and input $ \mathbf{X}\left(t\right)+\mathbf{N}\left(t\right) $ , where $ \mathbf{X}\left(t\right) $ and $ \mathbf{N}\left(t\right) $ are jointly wide-sense stationary independent random processes. If $ \mathbf{Z}\left(t\right)=\mathbf{X}\left(t\right)-\mathbf{Y}\left(t\right) $ , find the power spectral density $ S_{\mathbf{Z}}\left(\omega\right) $ in terms of $ S_{\mathbf{X}}\left(\omega\right) , S_{\mathbf{N}}\left(\omega\right) , m_{\mathbf{X}}=E\left[\mathbf{X}\right] $ , and $ m_{\mathbf{Y}}=E\left[\mathbf{Y}\right] $ .


Click here to view student answers and discussions

4

Suppose customer orders arrive according to an i.i.d. Bernoulli random process $ \mathbf{X}_{n} $ with parameter $ p $ . Thus, an order arrives at time index $ n $ (i.e., $ \mathbf{X}_{n}=1 $ ) with probability $ p $ ; if an order does not arrive at time index $ n $ , then $ \mathbf{X}_{n}=0 $ . When an order arrives, its size is an exponential random variable with parameter $ \lambda $ . Let $ \mathbf{S}_{n} $ be the total size of all orders up to time $ n $ .

(a) (20 points)

Find the mean and autocorrelation function of $ \mathbf{S}_{n} $ .

(b) (5 points)

Is $ \mathbf{S}_{n} $ a stationary random process? Explain.


Click here to view student answers and discussions

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison