(Proposed solution (Avi Steiner))
 
(One intermediate revision by the same user not shown)
Line 13: Line 13:
 
So, letting <math>r\in R</math>, <math>a\in N</math>, we have  
 
So, letting <math>r\in R</math>, <math>a\in N</math>, we have  
 
:<math>r-ar=(1-a)r=r(1-a)=r-ra</math>,
 
:<math>r-ar=(1-a)r=r(1-a)=r-ra</math>,
meaning that <math>r</math> and <math>a</math> commute. Therefore, if <math>a^n=0</math>, we have that <math>(ra)^n=(ar)^n=a^nr^n=0</math>; i.e. <math>ra=ar\in N</math>. Finally, suppose <math>a^n=0</math> and <math>b^m=0</math>. Since <math>a</math> and <math>b</math> commute, <math>(a+b)^{n+m}</math> is a </math>\mathbb{Z}</math>-linear combination of terms of the form <math>a^{n+m-k}b^k</math> for <math>0\leq k\leq n+m</math>. If <math>k\geq m</math>, then <math>b^m=0</math>, making the corresponding term vanish. If <math>k<m</math>, then <math>n+m-k>n</math>, so that <math>a^{n+m-k}=0</math>, again making the corresponding term vanish. Thus, <math>(a+b)^{n+m}=0</math>. Hence, <math>a+b\in N</math>. Thus, <math>N</math> is an ideal.
+
meaning that <math>r</math> and <math>a</math> commute. Therefore, if <math>a^n=0</math>, we have that <math>(ra)^n=(ar)^n=a^nr^n=0</math>; i.e. <math>ra=ar\in N</math>. Finally, suppose <math>a^n=0</math> and <math>b^m=0</math>. Since <math>a</math> and <math>b</math> commute, <math>(a+b)^{n+m}</math> is a <math>\mathbb{Z}</math>-linear combination of terms of the form <math>a^{n+m-k}b^k</math> for <math>0\leq k\leq n+m</math>. If <math>k\geq m</math>, then <math>b^m=0</math>, making the corresponding term vanish. If <math>k<m</math>, then <math>n+m-k>n</math>, so that <math>a^{n+m-k}=0</math>, again making the corresponding term vanish. Thus, <math>(a+b)^{n+m}=0</math>. Hence, <math>a+b\in N</math>. Thus, <math>N</math> is an ideal.
  
  
Line 20: Line 20:
  
 
[[ 2013 Summer MA 598A Weigel|Back to 2013 Summer MA 598A Weigel]]
 
[[ 2013 Summer MA 598A Weigel|Back to 2013 Summer MA 598A Weigel]]
 +
 +
[[Category:MA598ASummer2013Weigel]] [[Category:Math]] [[Category:MA598]] [[Category:Problem_solving]] [[Category:Algebra]]

Latest revision as of 08:21, 24 June 2013


Assignment 3, Problem 107

Let $ R $ be a commutative ring with identity such that the identity map is the only ring automorphism of $ R $. Prove that the set $ N $ of all nilpotent elements of $ R $ is an ideal of $ R $

Proposed solution (Avi Steiner)

Let $ N $ be the set of nilpotent elements of $ R $. Note that conjugation by a unit $ u $ is an automorphism: $ u(x+y)u^{-1}=uxu^{-1} + uyu^{-1} $, $ uxyu^{-1}=uxu^{-1}uyu^{-1} $, and the map $ x\mapsto uxu^{-1} $ is clearly a bijection (with inverse given by conjugation by $ u^{-1} $). So, since there are no non-trivial automorphisms of $ R $, all such conjugations must be trivial. Therefore, $ R^\times $ commutes pointwise with all of $ R $ and in particular is abelian.

Now, $ 1-a $ is a unit for any nilpotent $ a $: If $ a^n=0 $, then

$ (1+a+a^2+\cdots+a^{n-1})(1-a) = 1-a^n=1. $

So, letting $ r\in R $, $ a\in N $, we have

$ r-ar=(1-a)r=r(1-a)=r-ra $,

meaning that $ r $ and $ a $ commute. Therefore, if $ a^n=0 $, we have that $ (ra)^n=(ar)^n=a^nr^n=0 $; i.e. $ ra=ar\in N $. Finally, suppose $ a^n=0 $ and $ b^m=0 $. Since $ a $ and $ b $ commute, $ (a+b)^{n+m} $ is a $ \mathbb{Z} $-linear combination of terms of the form $ a^{n+m-k}b^k $ for $ 0\leq k\leq n+m $. If $ k\geq m $, then $ b^m=0 $, making the corresponding term vanish. If $ k<m $, then $ n+m-k>n $, so that $ a^{n+m-k}=0 $, again making the corresponding term vanish. Thus, $ (a+b)^{n+m}=0 $. Hence, $ a+b\in N $. Thus, $ N $ is an ideal.



Back to 2013 Summer MA 598A Weigel

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett