(New page: <h1> Equivalences of Well-ordered Relation </h1> <p> Definition </p>)
 
 
(3 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
Equivalences of Well-ordered Relation
 
Equivalences of Well-ordered Relation
 
</h1>
 
</h1>
 +
 +
<h2>
 +
Definitions
 +
</h2>
  
 
<p>
 
<p>
Definition
+
<math>\langle A, R \rangle</math> is an totally ordered class iff
 +
<ol>
 +
<li>(R is a relation on A) <math>R\subseteq A\times A</math></li>
 +
<li>(irreflexivity) <math>\forall x \in A\, \langle x,x \rangle \notin R</math></li>
 +
<li>(transitivity) <math>\forall x,y,z \in A\, \langle x,y \rangle \in R \wedge \langle y,z \rangle \in R \rightarrow \langle x,z \rangle \in R</math></li>
 +
<li>(trichotomy) <math>\forall x,y \in A\, \langle x,y \rangle \in R \vee \langle y,x \rangle \in R \vee x=y</math></li>
 +
</ol>
 
</p>
 
</p>

Latest revision as of 07:59, 1 June 2013

Equivalences of Well-ordered Relation

Definitions

$ \langle A, R \rangle $ is an totally ordered class iff

  1. (R is a relation on A) $ R\subseteq A\times A $
  2. (irreflexivity) $ \forall x \in A\, \langle x,x \rangle \notin R $
  3. (transitivity) $ \forall x,y,z \in A\, \langle x,y \rangle \in R \wedge \langle y,z \rangle \in R \rightarrow \langle x,z \rangle \in R $
  4. (trichotomy) $ \forall x,y \in A\, \langle x,y \rangle \in R \vee \langle y,x \rangle \in R \vee x=y $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal