(New page: <h1> Equivalences of Well-ordered Relation </h1> <p> Definition </p>) |
|||
(3 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
Equivalences of Well-ordered Relation | Equivalences of Well-ordered Relation | ||
</h1> | </h1> | ||
+ | |||
+ | <h2> | ||
+ | Definitions | ||
+ | </h2> | ||
<p> | <p> | ||
− | + | <math>\langle A, R \rangle</math> is an totally ordered class iff | |
+ | <ol> | ||
+ | <li>(R is a relation on A) <math>R\subseteq A\times A</math></li> | ||
+ | <li>(irreflexivity) <math>\forall x \in A\, \langle x,x \rangle \notin R</math></li> | ||
+ | <li>(transitivity) <math>\forall x,y,z \in A\, \langle x,y \rangle \in R \wedge \langle y,z \rangle \in R \rightarrow \langle x,z \rangle \in R</math></li> | ||
+ | <li>(trichotomy) <math>\forall x,y \in A\, \langle x,y \rangle \in R \vee \langle y,x \rangle \in R \vee x=y</math></li> | ||
+ | </ol> | ||
</p> | </p> |
Latest revision as of 07:59, 1 June 2013
Equivalences of Well-ordered Relation
Definitions
$ \langle A, R \rangle $ is an totally ordered class iff
- (R is a relation on A) $ R\subseteq A\times A $
- (irreflexivity) $ \forall x \in A\, \langle x,x \rangle \notin R $
- (transitivity) $ \forall x,y,z \in A\, \langle x,y \rangle \in R \wedge \langle y,z \rangle \in R \rightarrow \langle x,z \rangle \in R $
- (trichotomy) $ \forall x,y \in A\, \langle x,y \rangle \in R \vee \langle y,x \rangle \in R \vee x=y $