(One intermediate revision by the same user not shown)
Line 1: Line 1:
 +
<br> 1/9/13 <br>
 +
<!-- \mathbb{} is used to get the "mathbook" font introduced within the math function-->
 +
<math>\mathbb{}\text{If S is discrete and finite S = }  \{S_1, S_2, S_3\}, \text{ S = }  \{head,tail\}, S = \{win, lose\}, S = \{1,2,3,4,5,6\}</math>
 +
<br><math>\mathbb{}\text{If S is discrete but infinite, S = } \{S_1,S_2,S_3,...\}. \text{ Example: S = }\{1,2,3,4,...\} </math>
 +
<br><math>\mathbb{}\text{S = }\{\sin(2\pi*440t),\sin(2\pi*880t),\sin(2\pi*1320t),...\}</math>
 +
<br><math>\mathbb{}\text{Observe }\text{S = }\{\mathbb{R}\} \text{ is not routable; S = }\{0,1\} \text{ is not routable.}</math><br><math>\mathbb{}\text{S = } f \in \mathbb{R} \geq 0</math>
 +
<br><math>\mathbb{}\text{S = }\{\sin(2\pi*f*t) \mid 0 \leq f \leq \infty \}</math>
 +
<br><math>\mathbb{Z} \text{ is all integers -}\infty \text{ to } \infty</math>  
 +
<br><math>\text{Is } \mathbb{Z} \text{ routable? yes.}</math>
 +
<br><math>\mathbb{Z} = \{ 0,1,-1,2,-2,3,-3,... \}  \text{ as opposed to } \mathbb{R}</math>
 +
<br><math>\mathbb{R} = \{0,3,e,\pi ,-1,1.14,\sqrt{2}\}</math>
 +
<br><math>\mathbb{}\text{Many different ways to write a set } [0,1] \text{ = }  \{ x \in \mathbb{R} \text{ such that (s. t.) } 0\leq x \leq 1 \} </math>
 +
<br><math>\mathbb{} = \{ \text{real positive numbers no greater than 1 as well as 0} \} </math>
  
<br> 1/9/13
+
[[Image:100 3.jpg|500x700px]]  
 
+
[[Image:100 4.jpg|500x700px]]
If S is discrete and finite S = {<span class="texhtml">''s''<sub>1</sub>,''s''<sub>2</sub>,''s''<sub>3</sub></span>} S = {head,tail}, S = {win, lose}, S = {1,2,3,4,5,6}
+
[[Image:100 5.jpg|500x700px]]
 
+
If S is discrete but infinite,
+
 
+
S = {<span class="texhtml">''s''<sub>1</sub>,''s''<sub>2</sub>,''s''<sub>3</sub></span>,...} ex. S = {1,2,3,4,...}
+
 
+
    S = {sin(2<span class="texhtml">π</span>*440t),sin(2<span class="texhtml">π</span>*880t),sin(2<span class="texhtml">π</span>*1320t),...}
+
  Observe <math>_{S = \mathbb{R}}</math> is not routable; S = [0,1] is not routable
+
  S = {sin(2<span class="texhtml">π</span>*f*t)} f <math>\in \mathbb{R} \geq</math> 0
+
    = {sin(2<span class="texhtml">π</span>*f*t)|0<math>\leq f < \infty</math>}
+
 
+
<math>\mathbb{Z}</math> is all integers <math>-\infty</math> to <math>\infty</math> 
+
 
+
Is <math>\mathbb{Z}</math> routable? yes.
+
 
+
  <math>\mathbb{Z}</math>={0,1,-1,2,-2,3,-3, }as opposed to <math>\mathbb{R}</math>
+
 
+
<math>\mathbb{R}</math>= {0,3,e,<span class="texhtml">π</span>,-1,1.14,<math>\sqrt{2}</math>}
+
 
+
Many different ways to write a set [0,1] = {x <math>\in \mathbb{R} </math>such that(s. t.) 0<math>\leq x \leq</math> 1} ={real positive numbers no greater than 1 as well as 0}
+
 
+
[[Image:100 3.jpg|left|500x700px]]  
+
[[Image:100 4.jpg|right|500x700px]]
+
[[Image:100 5.jpg|left|500x700px]]
+
 
<br>  
 
<br>  
  

Latest revision as of 20:26, 13 May 2014


1/9/13
$ \mathbb{}\text{If S is discrete and finite S = } \{S_1, S_2, S_3\}, \text{ S = } \{head,tail\}, S = \{win, lose\}, S = \{1,2,3,4,5,6\} $
$ \mathbb{}\text{If S is discrete but infinite, S = } \{S_1,S_2,S_3,...\}. \text{ Example: S = }\{1,2,3,4,...\} $
$ \mathbb{}\text{S = }\{\sin(2\pi*440t),\sin(2\pi*880t),\sin(2\pi*1320t),...\} $
$ \mathbb{}\text{Observe }\text{S = }\{\mathbb{R}\} \text{ is not routable; S = }\{0,1\} \text{ is not routable.} $
$ \mathbb{}\text{S = } f \in \mathbb{R} \geq 0 $
$ \mathbb{}\text{S = }\{\sin(2\pi*f*t) \mid 0 \leq f \leq \infty \} $
$ \mathbb{Z} \text{ is all integers -}\infty \text{ to } \infty $
$ \text{Is } \mathbb{Z} \text{ routable? yes.} $
$ \mathbb{Z} = \{ 0,1,-1,2,-2,3,-3,... \} \text{ as opposed to } \mathbb{R} $
$ \mathbb{R} = \{0,3,e,\pi ,-1,1.14,\sqrt{2}\} $
$ \mathbb{}\text{Many different ways to write a set } [0,1] \text{ = } \{ x \in \mathbb{R} \text{ such that (s. t.) } 0\leq x \leq 1 \} $
$ \mathbb{} = \{ \text{real positive numbers no greater than 1 as well as 0} \} $

100 3.jpg 100 4.jpg 100 5.jpg


Go to lecture notes: 2 3 4 6 7 8 9 10 12 18 20 32 35 37 38 39 40 41 42 43 44

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett